Skip to main content
Log in

Assessment of Protein Expression Levels After Transient Global Cerebral Ischemia Using an Antibody Microarray Analysis

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

An antibody microarray was used to analyze potential modifications in brain protein levels induced by ischemic reperfusion. Total brain extracts from rats subjected to 15 min of transient global ischemia followed by 3 days of reperfusion and sham control animals were compared within the same array. Separate arrays were run to analyze resistant (cortex) and vulnerable (CA1) regions to ischemia. Candidate components distinguishing the two cellular populations were selected under stringent criteria. IR significantly decreased the expression of Bcl-x, caspase 11, GADD153, Cdk4, E2F1, Retinoblastoma-P, SMAD4, AP-1/c-jun, ATF2, PCAF, MAP1b and cofilin within both regions. NGF and NMDA 2A receptors and IκB were specifically down-regulated in CA1, while Pyk2-P, b-NOS, and tyrosine hydroxylase were slightly up-regulated in the same region. Some of the array results were validated by western blot. Both the array and western blot results suggested a relevant IR induced activation of calpain specifically at CA1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Thilmann R, Xie Y, Kleihues P et al (1986) Persistent inhibition of protein synthesis precedes delayed neuronal death in postischemic gerbil hippocampus. Acta Neuropathol 71:88–93

    Article  CAS  PubMed  Google Scholar 

  2. Hossmann KA (1993) Disturbances of cerebral protein synthesis and ischemic cell death. Prog Brain Res 96:161–177

    Article  CAS  PubMed  Google Scholar 

  3. Jamison JT, Kayali F, Rudolph J et al (2008) Persistent redistribution of poly-adenylated mRNAs correlates with translation arrest and cell death following global brain ischemia and reperfusion. Neuroscience 154:504–520

    Article  CAS  PubMed  Google Scholar 

  4. Burda J, Martin ME, Garcia A et al (1994) Phosphorylation of the alpha subunit of initiation factor 2 correlates with the inhibition of translation following transient cerebral ischaemia in the rat. Biochem J 302(Pt 2):335–338

    CAS  PubMed  Google Scholar 

  5. Martin de la Vega C, Burda J, Nemethova M et al (2001) Possible mechanisms involved in the down-regulation of translation during transient global ischaemia in the rat brain. Biochem J 357:819–826

    Article  CAS  PubMed  Google Scholar 

  6. Paschen W (2003) Shutdown of translation: lethal or protective? Unfolded protein response versus apoptosis. J Cereb Blood Flow Metab 23:773–779

    Article  PubMed  Google Scholar 

  7. DeGracia DJ, Hu BR (2007) Irreversible translation arrest in the reperfused brain. J Cereb Blood Flow Metab 27:875–893

    CAS  PubMed  Google Scholar 

  8. Salinas M, Burda J (2007) Regulation of protein metabolism. In: Lajtha A, Banik N (eds) Neural protein metabolism and function. Springer, Berlin, pp 1–24

    Google Scholar 

  9. Liu SJ, Zukin RS (2007) Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death. Trends Neurosci 30:126–134

    Article  CAS  PubMed  Google Scholar 

  10. Rami A (2003) Ischemic neuronal death in the rat hippocampus: the calpain-calpastatin-caspase hypothesis. Neurobiol Dis 13:75–88

    Article  CAS  PubMed  Google Scholar 

  11. Sharp FR, Aigang L, Yang T et al (2000) Multiple molecular penumbras after focal cerebral ischemia. J Cerebr Blood F Met 20:1011–1032

    Article  CAS  Google Scholar 

  12. Hou ST, MacManus JP (2002) Molecular mechanisms of cerebral ischemia-induced neuronal death. Int Rev Cytol 221:93–148

    Article  CAS  PubMed  Google Scholar 

  13. Read SJ, Parsons AA, Harrison DC et al (2001) Stroke genomics: approaches to identify, validate, and understand ischemic stroke gene expression. J Cereb Blood Flow Metab 21:755–778

    Article  CAS  PubMed  Google Scholar 

  14. Gilbert RW, Costain WJ, Blanchard ME et al (2003) DNA microarray analysis of hippocampal gene expression measured twelve hours after hypoxia-ischemia in the mouse. J Cereb Blood Flow Metab 23:1195–1211

    Article  CAS  PubMed  Google Scholar 

  15. Ohta H, Terao Y, Shintani Y et al (2007) Therapeutic time window of post-ischemic mild hypothermia and the gene expression associated with the neuroprotection in rat focal cerebral ischemia. Neurosci Res 57:424–433

    Article  CAS  PubMed  Google Scholar 

  16. Rickhag M, Wieloch T, Gido G et al (2006) Comprehensive regional and temporal gene expression profiling of the rat brain during the first 24 h after experimental stroke identifies dynamic ischemia-induced gene expression patterns, and reveals a biphasic activation of genes in surviving tissue. J Neurochem 96:14–29

    Article  CAS  PubMed  Google Scholar 

  17. MacManus JP, Graber T, Luebbert C et al (2004) Translation-state analysis of gene expression in mouse brain after focal ischemia. J Cereb Blood Flow Metab 24:657–667

    Article  CAS  PubMed  Google Scholar 

  18. Wolf-Yadlin A, Sevecka M Macbeath G (2009) Dissecting protein function and signaling using protein microarrays. Curr Opin Chem Biol

  19. Kopf E, Shnitzer D, Zharhary D (2005) Panorama Ab microarray cell signaling kit: a unique tool for protein expression analysis. Proteomics 5:2412–2416

    Article  CAS  PubMed  Google Scholar 

  20. Burda J, Hrehorovska M, Bonilla LG et al (2003) Role of protein synthesis in the ischemic tolerance acquisition induced by transient forebrain ischemia in the rat. Neurochem Res 28:1213–1219

    Article  CAS  PubMed  Google Scholar 

  21. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  22. Zalewska T, Ziemka-Nalecz M, Domanska-Janik K (2005) Transient forebrain ischemia effects interaction of Src, FAK, and PYK2 with the NR2B subunit of N-methyl-d-aspartate receptor in gerbil hippocampus. Brain Res 1042:214–223

    Article  CAS  PubMed  Google Scholar 

  23. Bevers MB, Neumar RW (2008) Mechanistic role of calpains in postischemic neurodegeneration. J Cereb Blood Flow Metab 28:655–673

    Article  CAS  PubMed  Google Scholar 

  24. García L, Burda J, Hrehorovská M et al (2004) Ischaemic preconditioning in the rat brain: effect on the activity of several initiation factors, Akt and extracellular signal-regulated protein kinase phosphorylation, and GRP78 and GADD34 expression. J Neurochem 88:136–147

    Article  PubMed  Google Scholar 

  25. Newcomb-Fernandez JK, Zhao X, Pike BR et al (2001) Concurrent assessment of calpain and caspase-3 activation after oxygen-glucose deprivation in primary septo-hippocampal cultures. J Cereb Blood Flow Metab 21:1281–1294

    Article  CAS  PubMed  Google Scholar 

  26. Gygi SP, Rochon Y, Franza BR et al (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    CAS  PubMed  Google Scholar 

  27. Lubec G, Krapfenbauer K, Fountoulakis M (2003) Proteomics in brain research: potentials and limitations. Prog Neurobiol 69:193–211

    Article  CAS  PubMed  Google Scholar 

  28. Bayes A, Grant SG (2009) Neuroproteomics: understanding the molecular organization and complexity of the brain. Nat Rev Neurosci 10:635–646

    Article  CAS  PubMed  Google Scholar 

  29. Tai HC, Schuman EM (2008) Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat Rev Neurosci 9:826–838

    Article  CAS  PubMed  Google Scholar 

  30. Peng PL, Zhong X, Tu W et al (2006) ADAR2-dependent RNA editing of AMPA receptor subunit GluR2 determines vulnerability of neurons in forebrain ischemia. Neuron 49:719–733

    Article  CAS  PubMed  Google Scholar 

  31. Rami A, Agarwal R, Botez G et al (2000) mu-Calpain activation, DNA fragmentation, and synergistic effects of caspase and calpain inhibitors in protecting hippocampal neurons from ischemic damage. Brain Res 866:299–312

    Article  CAS  PubMed  Google Scholar 

  32. Charriaut-Marlangue C, Margaill I, Represa A et al (1996) Apoptosis and necrosis after reversible focal ischemia: an in situ DNA fragmentation analysis. J Cereb Blood Flow Metab 16:186–194

    Article  CAS  PubMed  Google Scholar 

  33. Jover T, Tanaka H, Calderone A et al (2002) Estrogen protects against global ischemia-induced neuronal death and prevents activation of apoptotic signaling cascades in the hippocampal CA1. J Neurosci 22:2115–2124

    CAS  PubMed  Google Scholar 

  34. Kranenburg O, de Groot RP, Van der Eb AJ et al (1995) Differentiation of P19 EC cells leads to differential modulation of cyclin-dependent kinase activities and to changes in the cell cycle profile. Oncogene 10:87–95

    CAS  PubMed  Google Scholar 

  35. Rashidian J, Iyirhiaro GO, Park DS (2007) Cell cycle machinery and stroke. Biochim Biophys Acta 1772:484–493

    CAS  PubMed  Google Scholar 

  36. Tsai CH, Chiu SJ, Liu CC et al (2009) Regulated expression of cofilin and the consequent regulation of p27(kip1) are essential for G(1) phase progression. Cell Cycle 8:2365–2374

    CAS  PubMed  Google Scholar 

  37. Yuan Z, Gong S, Luo J et al (2009) Opposing roles for ATF2 and c-Fos in c-Jun-mediated neuronal apoptosis. Mol Cell Biol 29:2431–2442

    Article  CAS  PubMed  Google Scholar 

  38. Feng XH, Derynck R (2005) Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol 21:659–693

    Article  CAS  PubMed  Google Scholar 

  39. Schwaninger M, Inta I, Herrmann O (2006) NF-kappaB signalling in cerebral ischaemia. Biochem Soc Trans 34:1291–1294

    Article  CAS  PubMed  Google Scholar 

  40. Avraham H, Park SY, Schinkmann K et al (2000) RAFTK/Pyk2-mediated cellular signalling. Cell Signal 12:123–133

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Instituto de Salud Carlos III, Spain: 08/0761; 06/0289 and RETICS-RD06/0026/008, including a predoctoral position for MIA. We thank Mercedes Gomez-Calcerrada for her technical assistance. MEM is a researcher from FIBio-HRC supported by Consejeria de Sanidad (Comunidad de Madrid), Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matilde Salinas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayuso, M.I., García-Bonilla, L., Martín, M.E. et al. Assessment of Protein Expression Levels After Transient Global Cerebral Ischemia Using an Antibody Microarray Analysis. Neurochem Res 35, 1239–1247 (2010). https://doi.org/10.1007/s11064-010-0180-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0180-9

Keywords

Navigation