Skip to main content
Log in

Antioxidant and Electron Donating Function of Hypothalamic Polypeptides: Galarmin and Gx-NH2

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Chemical mechanisms of antioxidant and electron donating function of the hypothalamic proline-rich polypeptides have been clarified on the molecular level. The antioxidant-chelating property of Galarmin and Gx-NH2 was established by their capability to inhibit copper(II) dichloride catalyzed H2O2 decomposition, thus preventing formation of HO and HOO radicals. The antiradical activity of Galarmin and Gx-NH2 was determined by their ability to react with 2,2-diphenyl-1-picrylhydrazyl radical applying differential pulse voltammetry and UV–Vis spectrophotometry methods. Galarmin manifest antiradical activity towards 2,2-diphenyl-1-picrylhydrazyl radical, depending on the existence of phenolic OH group in tyrosine residue at the end of the molecule. The presence of antiradical activity and reduction properties of Galarmin are confirmed by the existence of an oxidation specific peak in voltammograms made by differential pulse voltammetry at E  = 0.795 V vs. Ag/Ag+ aq.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Galoyan AA (1997) Biochemistry of novel cardioactive hormones and immunomodulators of the functional system neurosecretory hypothalamus—endocrine heart. Nauka Publication, Moscow

    Google Scholar 

  2. Galoyan AA (2004) Brain neurosecretory cytokines: immune response and neuronal survival. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  3. Galoyan AA, Grigoryan A, Badalyan K (2006) Treatment and prophylaxis of anthrax by new neurosecretory cytokines. Neurochem Res 31(6):795–803

    Article  CAS  PubMed  Google Scholar 

  4. Davtyan TK, Manukyan HA, Mkrtchyan NR, Avetisyan SA, Galoyan AA (2005) Hypothalamic proline-rich polypeptide is a regulator of oxidative burst in himan neurotrophils and monocytes. NeuroImmunoModulation 12:270–284

    Article  CAS  PubMed  Google Scholar 

  5. Rabson A, Roitt IM, Delves PJ (2005) Really essential medical immunology, 2nd edn. Blackwell, Oxford

    Google Scholar 

  6. Simonyan GM, Simonyan RM, Aghamyan GR, Simonyan MA, Galoyan AA (2007) The effect of proline-rich polypeptide on reduction of methemoglobin and formation of superoxide by the b558 III cytochrome and suprol metalloproteins in vitro. Neurokhimiya (RAS and NAS RA) 24:37–40

    CAS  Google Scholar 

  7. Knaryan VH, Samantaray S, Varghase Verina, Srinivasan A, Galoyan AA, Mohanakumar KP (2006) Synthetic bovine proline-rich polypeptides generate hydroxyl radicals and fail to protect dopaminergic neurons against 1-methyl-4-phenyl 1, 2, 3, 6-tetrahydropyridine-induced dopaminergic neurotoxicity in mice. Neuropeptides 40:291–298

    Article  CAS  PubMed  Google Scholar 

  8. Knaryan VH, Samantaray S, Galoyan AA, Mohanakumar KP (2005) A Synthetic human proline-rich-polypeptide enhances hydroxyl radical generation and fails to protect dopaminergic neurons against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced toxicity in mice. Neurosci Lett 375:187–191

    Article  CAS  PubMed  Google Scholar 

  9. Tavadyan LA, Sedrakyan GZ, Minasyan SH (2004) Anti-oxidant and pro-oxidant reactivities of copper (II), manganese (II) and iron (III) 3, 5-di-i-propylsalicylate chelates during peroxidation of alkylbenzenes. Transition Met Chem 29:684–696

    Article  CAS  Google Scholar 

  10. Brad-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 28:25–30

    Google Scholar 

  11. Litwinenko G, Ingold KU (2003) Abnormal solvent effects on hydrogen atom abstractions 1. The reactions of phenols with 2, 2-diphenyl-1-picrylhydrazyl in alcohols. J Org Chem 68:3433–3438

    Article  Google Scholar 

  12. Minasyan SH, Tavadyan LA, Antonyan AP, Davtyan HG, Parsadanyan MA, Vardevanyan PO (2006) Differential pulse voltammetric studies of ethidium bromide binding to DNA. Bioelectrochemistry 68:48–55

    Article  CAS  PubMed  Google Scholar 

  13. Tavadyan LA, Tonikyan HG, Musaelyan MV, Barsegyan AE, Minasyan SH, Sorenson JRJ (2007) Anti-tert-butylperoxyl radical reactivities of manganese (III), cobalt (II) and nickel (II) salicylidene schiff base chelates. Int J Chem Kinet 39:431–439

    Article  CAS  Google Scholar 

  14. Haliwell B, Gutteridge JMC (1998) Free radical in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  15. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  PubMed  Google Scholar 

  16. Kohen R, Beit-Yannai E, Berry EM, Tirosh O (1999) Overall low molecular weight antioxidant activity of biological fluids and tissues by cyclic voltammetry. Methods Enzymol 300:285–296

    Article  CAS  PubMed  Google Scholar 

  17. Ingold KU (1961) Inhibition of autoxidation of organic substances in the liquid phase. Chem Rev 61(6):563–589

    Article  CAS  Google Scholar 

  18. Denisov ET, Denisova TG (2000) Handbook of antioxidants: bond dissociation energies. Rate constants, activation energies and enthalpies of reactions, 2nd edn. CRC Press, Boca Ration

    Google Scholar 

  19. Mardoyan VA, Tavadyan LA, Nalbandyan AB (1985) Reactivity of tert-butyl peroxyl radicals in the liquid phase. Kinetic parameters of the reaction of tert-butyl peroxyl radical with sterically unhindered phenols. Chem Phys (Moscow) 4:1107–1112

    CAS  Google Scholar 

  20. Tavadyan LA, Khachoyan AA, Martoyan GA, Kamal-Eldin A (2007) Numerical revelation of the kinetic significance of individual steps in the reaction mechanism of methyl linoleate peroxidation inhibited by α-tocopherol. Chem Phys Lipids 147:30–45

    Article  CAS  PubMed  Google Scholar 

  21. Kerman K, Vestergaard M, Miyki Ch, Yamamura S, Tamiya E (2007) Label-free electrochemical detection of the phosphorylated and non-phosphorylated forms of peptides based on tyrosine oxidation. Electrochem Commun 9:976–980

    Article  CAS  Google Scholar 

  22. Moreno L, Merkoci A, Alegret S, Hernandez-Cassou S, Saurina J (2004) Analysis of amino acids in complex samples by using voltammetry and multivariate calibration methods. Anal Chim Acta 507:247–253

    Article  CAS  Google Scholar 

  23. Huanq KJ, Luo DF, Xie WZ, Yu YS (2008) Sensitive voltammetric determination of tyrosine using multi-walled carbon nanotubes/4-aminobenzeresulfonic acid film- coated glassy carbon electrode. Coloids Surf B Biointerfaces 61:176–181

    Article  Google Scholar 

  24. Lin X-Q, Kang G-F, Zhu X-H (2008) Uracil grafted carbon electrode: electrocatalytic behavior of tryptophan, tyrosine, catecholamino and related compounds. Chin J Chem 26:681–688

    Article  CAS  Google Scholar 

  25. Mardoyan VA, Tavadyan LA, Nalbandyan AB (1986) Reactivity of tert-butyl peroxyradicals in the liquid phase. Influence of the solvent on reactions of tert-butyl peroxyradical with benzaldehyde and phenol. Chem Phys (Moscow) 5:1377–1383

    Google Scholar 

  26. Valgimigli L, Banks JT, Ingold KU (1995) Kinetic solvent effect on hydroxylic hydrogen atom abstractions is independent of the nature of the abstracting radical. Two extreme tests using vitamin E and phenol. J Am Chem Soc 117:9966–9971

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been implemented partially by the NFSAT EISI 01-01 grant support, for which we express our thanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Tavadyan.

Additional information

Special issue article in honour of Professor Armen Galoyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavadyan, L.A., Galoian, K.A., Harutunyan, L.A. et al. Antioxidant and Electron Donating Function of Hypothalamic Polypeptides: Galarmin and Gx-NH2 . Neurochem Res 35, 947–952 (2010). https://doi.org/10.1007/s11064-010-0173-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0173-8

Keywords

Navigation