Skip to main content

Advertisement

Log in

Chronic Administration of Cyclosporine A Changes Expression of BDNF and TrkB in Rat Hippocampus and Midbrain

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neurotrophins, including the brain-derived neurotrophic factor (BDNF), are essential for regulating neuronal differentiation in developing brains. BDNF and its receptor tyrosine kinase receptor B (TrkB) are involved in neuronal signaling, survival and plasticity. Cyclosporine A (CsA) is a potent immunosuppressive agent which prevents allograft rejection in organ transplantation and various immunological diseases. We investigated whether chronic administration of CsA decreases BDNF gene expression in rats, and the influence of CsA on mRNA levels of TrkB receptors was also examined. For 30 days of CsA (10 mg/kg/day) administration, the expression of BDNF and TrkB mRNA was significantly decreased in the hippocampus and midbrain, but there was no significant difference in the cortex. CsA (0, 1, 5 10, 15 ug/ml) down-regulated BDNF and TrkB gene expression through cultured SH-SY5Y cells, as did all-trans retinoic acid (ATRA), and there was no effect on cell viability. These experimental results indicate that suppression of the BDNF and TrkB mRNA, protein level of BDNF expression in the hippocampus and midbrain may be related to altered behavior observed following chronic administration of CsA. A common mechanism of adverse effects of CsA induced depressive symptoms may involve neurotoxicity mediated by down-regulation of brain BDNF and TrkB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ernfors P, Lee KF, Jaenisch R (1994) Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 368:147–150

    Article  CAS  PubMed  Google Scholar 

  2. Jones KR, Farinas I, Backus C et al (1994) Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 76:989–999

    Article  CAS  PubMed  Google Scholar 

  3. Klein R, Smeyne RJ, Wurst W et al (1993) Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Cell 75:113–122

    CAS  PubMed  Google Scholar 

  4. Chuang DM (2005) The antiapoptotic actions of mood stabilizers: molecular mechanisms and therapeutic potentials. Ann N Y Acad Sci 1053:195–204

    Article  CAS  PubMed  Google Scholar 

  5. Webster MJ, Herman MM, Kleinman JE et al (2006) BDNF and trkB mRNA expression in the hippocampus and temporal cortex during the human lifespan. Gene Expr Patterns 6:941–951

    Article  CAS  PubMed  Google Scholar 

  6. Chalovich EM, Zhu JH, Caltagarone J et al (2006) Functional repression of cAMP response element in 6-hydroxydopamine-treated neuronal cells. J Biol Chem 281:17870–17881

    Article  CAS  PubMed  Google Scholar 

  7. Chang YC, Rapoport SI, Rao JS (2009) Chronic administration of mood stabilizers upregulates BDNF and bcl-2 expression levels in rat frontal cortex. Neurochem Res 34:536–541

    Article  CAS  PubMed  Google Scholar 

  8. Faulds D, Goa KL, Benfield P (1993) Cyclosporin. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in immunoregulatory disorders. Drugs 45:953–1040

    Article  CAS  PubMed  Google Scholar 

  9. Rossini AA, Greiner DL, Mordes JP (1999) Induction of immunologic tolerance for transplantation. Physiol Rev 79:99–141

    CAS  PubMed  Google Scholar 

  10. Gabryel B, Bernacki J (2009) Effect of FK506 and cyclosporine A on the expression of BDNF, tyrosine kinase B and p75 neurotrophin receptors in astrocytes exposed to simulated ischemia in vitro. Cell Biol Int 33:739–748

    Article  CAS  PubMed  Google Scholar 

  11. Miyata K, Omori N, Uchino H et al (2001) Involvement of the brain-derived neurotrophic factor/TrkB pathway in neuroprotecive effect of cyclosporin A in forebrain ischemia. Neuroscience 105:571–578

    Article  CAS  PubMed  Google Scholar 

  12. Bird GL, Meadows J, Goka J et al (1990) Cyclosporin-associated akinetic mutism and extrapyramidal syndrome after liver transplantation. J Neurol Neurosurg Psychiatry 53:1068–1071

    Article  CAS  PubMed  Google Scholar 

  13. de Groen PC, Aksamit AJ, Rakela J et al (1987) Central nervous system toxicity after liver transplantation. The role of cyclosporine and cholesterol. N Engl J Med 317:861–866

    PubMed  Google Scholar 

  14. Kahan BD, Flechner SM, Lorber MI et al (1987) Complications of cyclosporine-prednisone immunosuppression in 402 renal allograft recipients exclusively followed at a single center for from one to five years. Transplantation 43:197–204

    Article  CAS  PubMed  Google Scholar 

  15. Schmitt U, Abou El-Ela A, Guo LJ et al (2006) Cyclosporine A (CsA) affects the pharmacodynamics and pharmacokinetics of the atypical antipsychotic amisulpride probably via inhibition of P-glycoprotein (P-gp). J Neural Transm 113:787–801

    Article  CAS  PubMed  Google Scholar 

  16. Telarovic S, Mihanovic M (2007) Cyclosporine-induced depressive psychosis in a liver transplant patient: a case report. Lijec Vjesn 129:74–76

    PubMed  Google Scholar 

  17. Di Nuzzo S, Zanni M, De Panfilis G (2007) Exacerbation of paranoid schizophrenia in a psoriatic patient after treatment with cyclosporine A, but not with etanercept. J Drugs Dermatol 6:1046–1047

    PubMed  Google Scholar 

  18. Menter A, Gottlieb A, Feldman SR et al (2008) Guidelines of care for the management of psoriasis and psoriatic arthritis: section 1. Overview of psoriasis and guidelines of care for the treatment of psoriasis with biologics. J Am Acad Dermatol 58:826–850

    Article  PubMed  Google Scholar 

  19. von Horsten S, Exton MS, Voge J et al (1998) Cyclosporine A affects open field behavior in DA rats. Pharmacol Biochem Behav 60:71–76

    Article  Google Scholar 

  20. Abemayor E, Sidell N, Juillard G (1989) Human medullary thyroid carcinoma. Initial characterization and in vitro differentiation of two new cell lines. Arch Otolaryngol Head Neck Surg 115:478–483

    CAS  PubMed  Google Scholar 

  21. Li PA, Uchino H, Elmer E et al (1997) Amelioration by cyclosporin A of brain damage following 5 or 10 min of ischemia in rats subjected to preischemic hyperglycemia. Brain Res 753:133–140

    Article  CAS  PubMed  Google Scholar 

  22. Kemper MJ, Sparta G, Laube GF et al (2003) Neuropsychologic side-effects of tacrolimus in pediatric renal transplantation. Clin Transplant 17:130–134

    Article  PubMed  Google Scholar 

  23. Jindal RM, Joseph JT, Morris MC et al (2003) Noncompliance after kidney transplantation: a systematic review. Transplant Proc 35:2868–2872

    Article  CAS  PubMed  Google Scholar 

  24. Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59:1116–1127

    Article  CAS  PubMed  Google Scholar 

  25. Kingsbury TJ, Bambrick LL, Roby CD et al (2007) Calcineurin activity is required for depolarization-induced, CREB-dependent gene transcription in cortical neurons. J Neurochem 103:761–770

    Article  CAS  PubMed  Google Scholar 

  26. Karege F, Vaudan G, Schwald M et al (2005) Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Brain Res Mol Brain Res 136:29–37

    Article  CAS  PubMed  Google Scholar 

  27. Shimizu E, Hashimoto K, Okamura N et al (2003) Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry 54:70–75

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Chen Chao-Long (CGMH, Kaohsiung, Taiwan) who is appreciated for animal support and technical assistance. Dr. Hsin-Chen Lee (NYMU, Taipei, Taiwan) is commended for kindly providing the SH-SY5Y neuroblastoma cell line.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiao-Lai Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CC., Hsu, LW., Huang, LT. et al. Chronic Administration of Cyclosporine A Changes Expression of BDNF and TrkB in Rat Hippocampus and Midbrain. Neurochem Res 35, 1098–1104 (2010). https://doi.org/10.1007/s11064-010-0160-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0160-0

Keywords

Navigation