Skip to main content
Log in

Neonatal Handling Impairs Spatial Memory and Leads to Altered Nitric Oxide Production and DNA Breaks in A Sex Specific Manner

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Early life events lead to behavioral and neurochemical changes in adulthood. The aim of this study is to verify the effects of neonatal handling on spatial memory, nitric oxide (NO) production, antioxidant enzymatic activities and DNA breaks in the hippocampus of male and female adult rats. Litters of rats were non-handled or handled (10 min/day, days 1–10 after birth). In adulthood they were subjected to a Morris water maze or used for biochemical evaluations. Female handled rats showed impairment in spatial learning. They also showed decreased NO production, while no effects were observed in these parameters in male rats. No effects were observed on the number of hippocampal NADPH diaphorase positive cells. In the Comet Assay, male handled rats showed increased DNA breaks index when compared to non-handled ones. We conclude that neonatal handling impairs learning performance in a sex-specific manner, what may be related to NO decreased levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Levine S (1957) Infantile experience and resistance to physiological stress. Science 126:405–406

    Article  CAS  PubMed  Google Scholar 

  2. Meaney MJ, Diorio J, Widdowson J et al (1996) Early environmental regulation of forebrain glucocorticoid receptor gene expression: implications for adrenocortical responses to stress. Dev Neurosci 18:49–72

    Article  CAS  PubMed  Google Scholar 

  3. Padoin MJ, Cadore LP, Gomes CM et al (2001) Long-lasting effects of neonatal stimulation on the behavior of rats. Behav Neurosci 115:1332–1340

    Article  CAS  PubMed  Google Scholar 

  4. Silveira PP, Portella AK, Clemente Z et al (2004) Neonatal handling alters feeding behavior of adult rats. Physiol Behav 80:739–745

    Article  CAS  PubMed  Google Scholar 

  5. Meaney MJ, Mitchell JB, Aitken DH et al (1991) The effects of neonatal handling on the development of the adrenocortical response to stress: implications for neuropathology and cognitive deficits in later life. Psychoneuroendocrinology 16:85–103

    Article  CAS  PubMed  Google Scholar 

  6. Meaney MJ, Aitken DH, van Berkel C et al (1988) Effect of neonatal handling on age-related impairments associated with the hippocampus. Science 239:766–768

    Article  CAS  PubMed  Google Scholar 

  7. Kellendonk C, Gass P, Kretz O et al (2002) Corticosteroid receptors in the brain: gene targeting studies. Brain Res Bull 57:73–83

    Article  CAS  PubMed  Google Scholar 

  8. McGaugh JL, Roozendaal B (2002) Role of adrenal stress hormones in forming lasting memories in the brain. Curr Opin Neurobiol 12:205–210

    Article  CAS  PubMed  Google Scholar 

  9. Vallée M, MacCari S, Dellu F et al (1999) Long-term effects of prenatal stress and postnatal handling on age-related glucocorticoid secretion and cognitive performance: a longitudinal study in the rat. Eur J Neurosci 11:2906–2916

    Article  PubMed  Google Scholar 

  10. Weinberg J, Levine S (1977) Early handling influences on behavioral and physiological responses during active avoidance. Dev Psychobiol 10:161–169

    Article  CAS  PubMed  Google Scholar 

  11. Kosten TA, Lee HJ, Kim JJ (2007) Neonatal handling alters learning in adult male and female rats in a task-specific manner. Brain Res 1154:144–153

    Article  CAS  PubMed  Google Scholar 

  12. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4a edn. Oxford University Press, Oxford

    Google Scholar 

  13. Olanow CW (1992) An introduction to the free radical hypothesis in Parkinson’s disease. Ann Neurol 32(Suppl):S2–S9

    Article  CAS  PubMed  Google Scholar 

  14. Haque AM, Hashimoto M, Katakura M et al (2008) Green tea catechins prevent cognitive deficits caused by Abeta1–40 in rats. J Nutr Biochem 19:619–626

    Article  CAS  PubMed  Google Scholar 

  15. Xu Y, Zhang JJ, Xiong L et al (2009) Green tea polyphenols inhibit cognitive impairment induced by chronic cerebral hypoperfusion via modulating oxidative stress. J Nutr Biochem [Epub ahead of print]

  16. Cochrane CG (1991) Mechanisms of oxidant injury of cells. Mol Aspects Med 12:137–147

    Article  CAS  PubMed  Google Scholar 

  17. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  CAS  PubMed  Google Scholar 

  18. Pögün S, Kuhar MJ (1994) Regulation of neurotransmitter reuptake by nitric oxide. Ann N Y Acad Sci 738:305–315

    PubMed  Google Scholar 

  19. Hawkins RD, Son H, Arancio O (1998) Nitric oxide as a retrograde messenger during long-term potentiation in hippocampus. Prog Brain Res 118:155–172

    Article  CAS  PubMed  Google Scholar 

  20. Silveira PP, da Silva Benetti C, Ayres C et al (2006) Satiety assessment in neonatally handled rats. Behav Brain Res 173:205–210

    Article  PubMed  Google Scholar 

  21. Morris RGM, Garrud JNP, Rawlins JO (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683

    Article  CAS  PubMed  Google Scholar 

  22. Pettenuzzo LF, Schuck PF, Fontella F et al (2002) Ascorbic acid prevents cognitive deficits caused by chronic administration of propionic acid to rats in the water maze. Pharmacol Biochem Behav 73:623–629

    Article  CAS  PubMed  Google Scholar 

  23. Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71

    Article  CAS  PubMed  Google Scholar 

  24. Delmas-Beauvieux MC, Peuchant E, Dumon MF et al (1995) Relationship between red blood cell antioxidant enzymatic system status and lipoperoxidation during the acute phase of malaria. Clin Biochem 28:163–169

    Article  CAS  PubMed  Google Scholar 

  25. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333

    Article  CAS  PubMed  Google Scholar 

  26. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  27. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  28. Tice RR, Agurell E, Anderson D et al (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutag 35:206–221

    Article  CAS  Google Scholar 

  29. Collins A, Dusinská M, Franklin M et al (1997) Comet assay in human biomonitoring studies: reliability, validation, and applications. Environ Mol Mutagen 30:139–146

    Article  CAS  PubMed  Google Scholar 

  30. Hope BT, Michael GJ, Knigge KM et al (1991) Neuronal NADPH diaphorase is a nitric oxide synthase. Proc Natl Acad Sci USA 88:2811–2814

    Article  CAS  PubMed  Google Scholar 

  31. Rigon P, de Castilhos J, Saur L et al (2009) NADPH-diaphorase activity in the nociceptive pathways of land snail Megalobulimus abbreviatus: the involvement of pedal ganglia. Invert Neurosci [Epub ahead of print]

  32. Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates, 3rd edn. AcademicPress, San Diego

    Google Scholar 

  33. Comin D, Gazarini L, Zanoni JN et al (2010) Vitamin E improves learning performance and changes the expression of nitric oxide-producing neurons in the brains of diabetic rats. Behav Brain Res 210:38–45

    Article  CAS  PubMed  Google Scholar 

  34. Sabbatini M, Bronzetti E, Felici L et al (1999) NADPH-diaphorase histochemistry in the rat cerebral cortex and hippocampus: effect of electrolytic lesions of the nucleus basalis magnocellularis. Mech Ageing Dev 107:147–157

    Article  CAS  PubMed  Google Scholar 

  35. Pham TM, Söderström S, Winblad B et al (1999) Effects of environmental enrichment on cognitive function and hippocampal NGF in the non-handled rats. Behav Brain Res 103:63–70

    Article  CAS  PubMed  Google Scholar 

  36. Vallée M, Mayo W, Dellu F et al (1997) Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring: correlation with stress-induced corticosterone secretion. J Neurosci 17:2626–2636

    PubMed  Google Scholar 

  37. Garoflos E, Panagiotaropoulos T, Pondiki S et al (2005) Cellular mechanisms underlying the effects of an early experience on cognitive abilities and affective states. Ann Gen Psychiatry 4:1–8

    Article  Google Scholar 

  38. Meaney MJ, Aitken DH, Bhatnagar S et al (1991) Postnatal handling attenuates certain neuroendocrine, anatomical, and cognitive dysfunctions associated with aging in female rats. Neurobiol Aging 12:31–38

    Article  CAS  PubMed  Google Scholar 

  39. Arnaiz SL, D’Amico G, Paglia N et al (2004) Enriched environment, nitric oxide production and synaptic plasticity prevent the aging-dependent impairment of spatial cognition. Mol Aspects Med 25:91–101

    Article  CAS  PubMed  Google Scholar 

  40. Qiang M, Chen YC, Wang R et al (1997) Nitric oxide is involved in the formation of learning and memory in rats: studies using passive avoidance response and Morris water maze task. Behav Pharmacol 8:183–187

    CAS  PubMed  Google Scholar 

  41. Demirgoren S, Pogun S (1995) Effects of nitric oxide on Morris Water Maze performance in rats: correlation with cGMP levels. In: Packer L, Wirtz KWA (eds) Signaling mechanisms—from transcription factors to oxidative stress. Springer, New York, pp 271–277

    Google Scholar 

  42. Kanit L, Koylu EO, Yararbas G et al (2003) The effect of nitric oxide synthase inhibition on cognitive ability and strategies employed for place learning in the water maze: sex differences. Brain Res Bull 62:151–159

    Article  CAS  PubMed  Google Scholar 

  43. Stepanichev MY, Onufriev MV, Yakovlev AA et al (2008) Amyloid-beta (25–35) increases activity of neuronal NO-synthase in rat brain. Neurochem Int 52:1114–1124

    Article  CAS  PubMed  Google Scholar 

  44. Koshimura K, Murakami Y, Tanaka J et al (2004) Effect of tetrahydrobiopterin on nitric oxide synthase-containing cells in the rat hippocampus. Neurosci Res 50:161–167

    Article  CAS  PubMed  Google Scholar 

  45. Medina JH, Bekinschtein P, Cammarota M et al (2008) Do memories consolidate to persist or do they persist to consolidate? Behav Brain Res 192:61–69

    Article  PubMed  Google Scholar 

  46. Lemaire V, Lamarque S, Le Moal M et al (2006) Postnatal stimulation of the pups counteracts prenatal stress-induced deficits in hippocampal neurogenesis. Biol Psychiatry 59:786–792

    Article  PubMed  Google Scholar 

  47. Klaude M, Eriksson S, Nygren J et al (1996) The comet assay: mechanisms and technical considerations. Mutat Res 363:89–96

    PubMed  Google Scholar 

  48. Burlinson B, Tice RR, Speit G et al (2007) Fourth international workgroup on genotoxicity testing: results of the in vivo comet assay workgroup. Mutat Res 627:31–35

    CAS  PubMed  Google Scholar 

  49. El-Khamisy SF, Caldecott KW (2006) TDP1-dependent DNA single-strand break repair and neurodegeneration. Mutagenesis 21:219–224

    Article  CAS  PubMed  Google Scholar 

  50. Aiyer HS, Vadhanam MV, Stoyanova R et al (2008) Dietary berries and ellagic Acid prevent oxidative DNA damage and modulate expression of DNA repair genes. Int J Mol Sci 9:327–341

    Article  PubMed  Google Scholar 

  51. Zhang N, Ding S, Kolbanovskiy A et al (2009) NMR and computational studies of stereoisomeric equine estrogen-derived DNA cytidine adducts in oligonucleotide duplexes: opposite orientations of diastereomeric forms. Biochemistry 48:7098–7109

    Article  CAS  PubMed  Google Scholar 

  52. Santen R, Cavalieri E, Rogan E et al (2009) Estrogen mediation of breast tumor formation involves estrogen receptor-dependent, as well as independent, genotoxic effects. Ann NY Acad Sci 1155:132–140

    Article  CAS  PubMed  Google Scholar 

  53. Champagne FA, Curley JP (2009) Epigenetic mechanisms mediating the long-term effects of maternal care on development. Neurosci Biobehav Rev 33:593–600

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Paula Rigon for support with NADPH-d technique and Luisa D. Fitarelli for help with the behavioral procedures.

Financial support

National Research Council of Brazil (CNPq), CAPES, FAPERGS-PRONEX and FINEP/Rede IBN 01.06.0842-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Dalmaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noschang, C.G., Krolow, R., Fontella, F.U. et al. Neonatal Handling Impairs Spatial Memory and Leads to Altered Nitric Oxide Production and DNA Breaks in A Sex Specific Manner. Neurochem Res 35, 1083–1091 (2010). https://doi.org/10.1007/s11064-010-0158-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0158-7

Keywords

Navigation