Skip to main content
Log in

Chronic Unpredictable Stress Before Pregnancy Reduce the Expression of Brain-Derived Neurotrophic Factor and N-Methyl-D-Aspartate Receptor in Hippocampus of Offspring Rats Associated with Impairment of Memory

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

To investigate the effect of stress before pregnancy on memory function and serum corticosterone (COR) levels, as well as the expression of brain-derived neurotrophic factor (BDNF), N-methyl-D-aspartate (NMDA) 2A (NR2A) and 2B (NR2B) receptors in the hippocampus of the offspring rats when they were 2 months postnatally. Adult female Sprague-Dawley (SD) rats were divided randomly into two groups: control group (n = 8) and chronic unpredictable stress (CUS) group (n = 12). All rats were tested in the open field test and sucrose intake test before and after CUS. The memory function of their offspring were tested in the Morris water maze. Serum COR levels were determined by using a standard radioimmunoassay kit. The expression of BDNF, NR2A and NR2B in the hippocampus of the offspring rats were studied by immunoreactivity quantitative analysis and real-time RT-PCR. (1) Following CUS, reduced open field test activity and decreased sucrose consumption were observed relative to controls. (2) The Morris water maze task demonstrated increased escape latency in the offspring rats of CUS group relative to controls (P < 0.01). No-platform probe testing showed reduced crossings for offspring of CUS relative to controls (P < 0.05). (3) CUS induced a significant increase in serum COR levels of the offspring rats (P < 0.01), but no difference was observed in the body or brain weight between the offspring of the two groups. (4) Immunoreactivity quantitative analysis shows that BDNF and NR2B in the offspring of CUS group was decreased in the CA3 and DG regions of the hippocampus compared to the control group offspring, but NR2A levels were not altered between the offspring of the two groups. (5) Real-time RT-PCR demonstrated that BDNF and NR2B mRNAs were significantly decreased in the offspring of the CUS group compared with the control group (P < 0.01). No significant difference in the levels of NR2A mRNA was detected between offspring of CUS and offspring of control groups. In our study, pregestational stress can increase serum corticosterone levels and reduce the expression of BDNF and NR2B in the hippocampus of offspring. These alterations are associated with impairment of memory in the adult offspring. These data suggest that, stress before pregnancy might have a profound influence on brain development of offspring, that may persist into and be manifested in adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BDNF:

Brain-derived neurotrophic factor

COR:

Corticosterone

CUS:

Chronic unpredictable stress

CRH:

Corticotropin-releasing hormone

E:

Embryonic

EL:

Escape latency

GCs:

Glucocorticoids

GR:

Glucocorticoid receptors

HPA:

Hypothalamic-pituitary-adrenal

LTP:

Long-term potentiation

NMDA:

N-methyl-D-aspartate

NR:

N-methyl-D-aspartate receptor

PND:

Postnatal day

RT-PCR:

Reverse-transcriptase polymerase chain reaction

References

  1. Beversdorf DQ, Manning SE, Hillier A (2005) Timing of prenatal stressors and autism. J Autism Dev Disord 35:471–478

    Article  CAS  PubMed  Google Scholar 

  2. Li ZY, Yan CH, Xu J (2008) Effects of prenatal exposure to stress and lead on spatial learning and memory development in rats. Zhonghua Yu Fang Yi Xue Za Zhi 42(10):717–721

    CAS  PubMed  Google Scholar 

  3. Kapoor A, Kostaki A, Janus C (2009) The effects of prenatal stress on learning in adult offspring is dependent on the timing of the stressor. Behav Brain Res 197(1):144–149

    Article  PubMed  Google Scholar 

  4. Binder EB, Bradley RG, Liu W et al (2008) Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA 299(11):1291–1305

    Article  CAS  PubMed  Google Scholar 

  5. Stratakis CA, Chrousos GP (1995) Neuroendocrinology and pathophysiology of the stress system. In: Chrousos GP, McCarty R, Pacak K, Cizza G, Sternberg E, Gold PW, Kvetnansky R (eds) Stress: basic mechanisms and clinical implications. The New York Academy Science, New York, pp 1–18

    Google Scholar 

  6. Barbazanges A, Piazza PV, Le Moal M et al (1996) Maternal glucocorticoid secretion mediates long-term effects of prenatal stress. J Neurosci 16:3943–3949

    CAS  PubMed  Google Scholar 

  7. Welberg LA, Seckl JR (2001) Prenatal stress, glucocorticoids and the programming of the brain. J Neuroendocrinol 13:113–128

    Article  CAS  PubMed  Google Scholar 

  8. Martínez-Téllez RI, Hernández-Torres E, Gamboa C (2009) Prenatal stress alters spine density and dendritic length of nucleus accumbens and hippocampus neurons in rat offspring. Synapse 63(9):794–804

    Article  PubMed  Google Scholar 

  9. Lemaire V, Koehl M, Le Moal M et al (2000) Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci USA 97:11032–11037

    Article  CAS  PubMed  Google Scholar 

  10. Yang J, Han H, Cao J (2006) Prenatal stress modifies hippocampal synaptic plasticity and spatial learning in young rat offspring. Hippocampus 16:431–436

    Article  PubMed  Google Scholar 

  11. Meunier J, Gue M, Recasens M (2004) Attenuation by a sigma1 (sigma1) receptor agonist of the learning and memory deficits induced by a prenatal restraint stress in juvenile rats. Br J Pharmacol 142:689–700

    Article  CAS  PubMed  Google Scholar 

  12. Zagron G, Weinstock M (2006) Maternal adrenal hormone secretion mediates behavioural alterations induced by prenatal stress in male and female rats. Behav Brain Res 175:323–328

    Article  CAS  PubMed  Google Scholar 

  13. Cannizzaro C, Plescia F, Martire M (2006) Single, intense prenatal stress decreases emotionality and enhances learning performance in the adolescent rat offspring: interaction with a brief, daily maternal separation. Behav Brain Res 169:128–136

    Article  PubMed  Google Scholar 

  14. Fujioka T, Fujioka A, Tan N (2001) Mild prenatal stress enhances learning performance in the non-adopted rat offspring. Neuroscience 103:301–307

    Article  CAS  PubMed  Google Scholar 

  15. Li H, Zhang L, Fang Z (2009) Behavioral and neurobiological studies on the male progeny of maternal rats exposed to chronic unpredictable stress before pregnancy. Neurosci Lett. Epub ahead of print

  16. Gomez-Pinilla F, Vaynman S, Ying Z (2008) Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. Eur J Neurosci 28(11):2278–2287

    Article  PubMed  Google Scholar 

  17. Mizuno M, Yamada K, Olariu A et al (2000) Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J Neurosci 20:7116–7121

    CAS  PubMed  Google Scholar 

  18. Poo MM (2001) Neurotrophins as synaptic modulators [Review]. Nat Rev Neurosci 2:24–32

    Article  CAS  PubMed  Google Scholar 

  19. Seeburg PH (1993) The molecular biology of mammalian glutamate receptor channels. Trends Neurosci 16:359–365

    Article  CAS  PubMed  Google Scholar 

  20. Gao XM, Sakai K, Roberts RC et al (2000) Ionotropic glutamate receptors and expression of N-methyl-Daspartate receptor subunits in subregions of human hippocampus: effects of schizophrenia. Am J Psychiatry 157:1141–1149

    Article  CAS  PubMed  Google Scholar 

  21. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  CAS  PubMed  Google Scholar 

  22. Katz RJ, Schmaltz K (1980) Dopaminergic involvement in attention. A novel animal model. Prog Neuropsychopharmacol 4:585–590

    Article  CAS  PubMed  Google Scholar 

  23. Willner P (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl) 134:319–329

    Article  CAS  Google Scholar 

  24. Sfikakis A, Galanopoulou P, Konstandi M et al (1996) Stress through handling for vaginal screening, serotonin, and ACTH response to ether. Pharmacol Biochem Behav 53:965–970

    Article  CAS  PubMed  Google Scholar 

  25. Rossato JI, Bevilaqua LRM, Myskiw JC (2007) On the role of hippocampal protein synthesis in the consolidation and reconsolidation of object recognition memory. Learn Mem 14:36–46

    Article  PubMed  Google Scholar 

  26. Frick KM, Stillner ET, Berger-Sweeney J (2000) Mice are not little rats: species differences in a one-day water maze task. Neuro Report 11:3461–3465

    CAS  Google Scholar 

  27. Ang ET, Dawe GS, Wong PTH (2006) Alterations in spatial learning and memory after forced exercise. Brain Res 1113:186–193

    Article  CAS  PubMed  Google Scholar 

  28. Rossato JI, Bevilaqua LRM, Lima RH (2006) On the participation of hippocampal p38 mitogen-activated protein kinase in extinction and reacquisition of inhibitory avoidance memory. Neuroscience 143:15–23

    Article  CAS  PubMed  Google Scholar 

  29. Loeliger MM, Briscoe T, Ree SM (2008) BDNF increases survival of retinal dopaminergic neurons after prenatal compromise. Invest Ophthalmol Vis Sci 49:1282–1289

    Article  PubMed  Google Scholar 

  30. Bilbo SD, Newsum NJ, Sprunger DB (2007) Differential effects of neonatal handling on early life infection-induced alterations in cognition in adulthood. Brain Behav Immun 21:332–342

    Article  PubMed  Google Scholar 

  31. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  32. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(_△△C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  33. Willner P, Muscat R, Papp M (1992) Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev 16:525–534

    Article  CAS  PubMed  Google Scholar 

  34. Glynn LM, Schetter CD, Wadhwa PD (2004) Pregnancy affects appraisal of negative life events. J Psychoso Res 56(1):47–52

    Article  Google Scholar 

  35. Entringer S, Kumsta R, Hellhammer DH (2009) Prenatal exposure to maternal psychosocial stress and HPA axis regulation in young adults. Horm Behav 55(2):292–298

    Article  CAS  PubMed  Google Scholar 

  36. Magarinos AM, Verdugo JM, McEwen BS (1997) Chronic stress alters synaptic terminal structure in hippocampus. Proc Natl Acad Sci USA 94:14002–14008

    Article  CAS  PubMed  Google Scholar 

  37. McEwen BS (1998) Protective and damaging effects of stress mediators. N Engl J Med 338:171–179

    Article  CAS  PubMed  Google Scholar 

  38. Romberg C, Raffel J, Martin L (2009) Induction and expression of GluA1 (GluR-A)-independent LTP in the hippocampus. Eur J Neurosci 29(6):1141–1152

    Article  PubMed  Google Scholar 

  39. Fumagalli F, Bedogni F, Slotkin TA (2005) Prenatal stress elicits regionally selective changes in basal FGF-2gene expression in adulthood and alters the adult response to acute or chronic stress. Neurobiol Dis 20(3):731–737

    Article  CAS  PubMed  Google Scholar 

  40. Kang H, Schuman EM (1995) Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 267:1658–1662

    Article  CAS  PubMed  Google Scholar 

  41. Thoenen H (2000) Neurotrophins and activity-dependent plasticity. Prog Brain Res 128:183–191

    Article  CAS  PubMed  Google Scholar 

  42. Kealy J, Commins S (2009) Antagonism of glutamate receptors in the CA1 to perirhinal cortex projection prevents long-term potentiation and attenuates levels of brain-derived neurotrophic factor. Brain Res 1265:53–64

    Article  CAS  PubMed  Google Scholar 

  43. Pozzo-Miller LD, Gottschalk W, Zhang L (1999) Impairments in high-frequency transmission, synaptic vesicle docking, and synaptic protein distribution in the hippocampus of BDNF knockout mice. J Neurosci 19:4972–4983

    CAS  PubMed  Google Scholar 

  44. Siegel GJ, Chauhan NB (2000) Neurotrophic factors in Alzheimer’s and Parkinson’s disease brain. Brain Res Brain Res Rev 33:199–227

    Article  CAS  PubMed  Google Scholar 

  45. Batchelor PE, Liberatore GT, Porritt MJ (2000) Inhibition of brain-derived neurotrophic factor and glial cell linederived neurotrophic factor expression reduces dopaminergic sprouting in the injured striatum. Eur J Neurosci 12:3462–3468

    Article  CAS  PubMed  Google Scholar 

  46. Song DK, Choe B, Bae JH (1998) Brainderived neurotrophic factor rapidly potentiates synaptic transmission through NMDA, but suppresses it through non-NMDA receptors in rat hippocampal neuron. Brain Res 799:176–179

    Article  CAS  PubMed  Google Scholar 

  47. Bhave SV, Ghoda L, Hoffman PL (1999) Brain-derived neurotrophic factor mediates the anti-apoptotic effect of NMDA in cerebellar granule neurons: signal transduction cascades and site of ethanol action. J Neurosci 19:3277–3286

    CAS  PubMed  Google Scholar 

  48. Kovalchuk Y, Hanse E, Kafitz KW et al (2002) Postsynaptic induction of BDNF-mediated long-term potentiation. Science 295:1729–1734

    Article  CAS  PubMed  Google Scholar 

  49. Jiang X, Tian F, Mearow K et al (2005) The excitoprotective effect of N-methyl-d-aspartate receptors is mediated by a brain-derived neurotrophic factor autocrine loop in cultured hippocampus neurons. J Neurochem 94:713–722

    Article  CAS  PubMed  Google Scholar 

  50. Lu B (2003) BDNF and activity-dependent synaptic modulation. Learn Mem 10:86–98

    Article  PubMed  Google Scholar 

  51. Nagappan G, Lu B (2005) Activity-dependent modulation of the BDNF receptor TrkB: mechanisms and implications. Trends Neurosci 28:464–471

    Article  CAS  PubMed  Google Scholar 

  52. Yamada K, Nabeshima T (2004) Interaction of BDNF/TrkB signaling with NMDA receptor in learning and memory. Drug News Perspect 17:435–438

    Article  CAS  PubMed  Google Scholar 

  53. Barria A, Malinow R (2002) Subunit-specific NMDA receptor trafficking to synapses. Neuron 35:345–353

    Article  CAS  PubMed  Google Scholar 

  54. Fukaya M, Kato A, Lovett C et al (2003) Retention of NMDA receptor NR2 subunits in the lumen of endoplasmic reticulum in targeted NR1 knockout mice. Proc Natl Acad Sci USA 100:4855–4860

    Article  CAS  PubMed  Google Scholar 

  55. Wyllie DJ, Behe P, Colquhoun D (1998) Single-channel activations and concentration jumps: comparison of recombinant NR1a/NR2A and NR1a/NR2D NMDA receptors. J Physiol (Lond) 510:1–18

    Article  CAS  Google Scholar 

  56. Clayton DA, Mesches MH, Alvarez E et al (2002) A hippocampal NR2B deficit can mimic age-related changes in long-term potentiation and spatial learning in the Fischer 344 rat. J Neurosci 22:3628–3637

    CAS  PubMed  Google Scholar 

  57. Kamphuis PJ, Gardoni F, Kamal A et al (2003) Long-lasting effects of neonatal dexamethasone treatment on spatial learning and hippocampal synaptic plasticity: involvement of the NMDA receptor complex. FASEB J 17:911–913

    CAS  PubMed  Google Scholar 

  58. Dunah AW, Wang Y, Yasuda RP et al (2000) Alterations in subunit expression, composition, and phosphorylation of striatal N-methyl-D-aspartate glutamate receptors in a rat 6-hydroxydopamine model of Parkinson’s disease. Mol Pharmacol 57:342–352

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Shi XC for his critical comments on the experiments and manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuechuan Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Shi, X., Xu, H. et al. Chronic Unpredictable Stress Before Pregnancy Reduce the Expression of Brain-Derived Neurotrophic Factor and N-Methyl-D-Aspartate Receptor in Hippocampus of Offspring Rats Associated with Impairment of Memory. Neurochem Res 35, 1038–1049 (2010). https://doi.org/10.1007/s11064-010-0152-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0152-0

Keywords

Navigation