Skip to main content

Advertisement

Log in

An Electron Spin Resonance Study for Real-time Detection of Ascorbyl Free Radicals After Addition of Dimethyl Sulfoxide in Murine Hippocampus or Plasma During Kainic Acid-Induced Seizures

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Electron spin resonance (ESR)-silent ascorbate solutions generate a detectable, likely concentration-dependent signal of ascorbyl free radicals (AFR) immediately upon addition of a molar excess of dimethyl sulfoxide (DMSO). We aimed to perform quantitative ESR analysis of AFR in real time after addition of DMSO (AFR/DMSO) to evaluate ascorbate concentrations in fresh hippocampus or plasma following systemic administration of kainate in mice. Use of a special tissue-type quartz cell allowed immediate detection of AFR/DMSO ESR spectra in fresh tissues from mice. AFR/DMSO content was increased significantly in fresh hippocampus or plasma obtained during kainate-induced seizures of mice, reaching maximum levels at 90 min after intraperitoneal administration of 50 mg/kg kainic acid. This suggests that oxidative injury of the hippocampus resulted from the accumulation of large amounts of ascorbic acid in the brain after kainic acid administration. AFR/DMSO content measured on an ESR spectrometer can be used for real-time evaluation of ascorbate content in fresh tissue. Due to the simplicity, good performance, low cost and real-time monitoring of ascorbate, this method may be applied to clinical research and treatment in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Patel M (2004) Mitochondrial dysfunction and oxidative stress: cause and consequence of epileptic seizures. Free Radic Biol Med 37:1951–1962

    Article  CAS  PubMed  Google Scholar 

  2. Patel MN (2002) Oxidative stress, mitochondrial dysfunction, and epilepsy. Free Radic Res 36:1139–1146

    Article  CAS  PubMed  Google Scholar 

  3. Cock HR (2002) The role of mitochondria and oxidative stress in neuronal damage after brief and prolonged seizures. Prog Brain Res 135:187–196

    Article  CAS  PubMed  Google Scholar 

  4. Devi PU, Manocha A, Vohora D (2008) Seizures, antiepileptics, antioxidants and oxidative stress: an insight for researchers. Expert Opin Pharmacother 9:3169–3177

    Article  CAS  PubMed  Google Scholar 

  5. Balcioglu A, Maher TJ (1994) The measurement of nitric oxide release induced by kainic acid using a novel hemoglobin-trapping technique with microdialysis. Ann N Y Acad Sci 738:282–288

    Article  CAS  PubMed  Google Scholar 

  6. Wang Q, Yu S, Simonyi A, Sun GY, Sun AY (2005) Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Mol Neurobiol 31:3–16

    Article  CAS  PubMed  Google Scholar 

  7. Rice ME (2000) Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci 23:209–216

    Article  CAS  PubMed  Google Scholar 

  8. Song WO, Beecher GR, Eitenmiller RR (eds) (2000) Modern analytical methodologies in fat- and water-soluble vitamins. In: Chemical analysis, vol 154. Wiley, New York, pp 411–433

  9. Toyokuni S, Masumizu T, Ozeki M, Kondo S, Hiroyasu M, Kohno M, Hiai H (2001) An electron spin resonance study on alkylperoxyl radical in thin-sliced renal tissues from ferric nitrilotriacetate-treated rats: the effect of alpha-tocopherol feeding. Free Radic Res 35:245–255

    Article  CAS  PubMed  Google Scholar 

  10. Pietri S, Culcasi M, Stella L, Cozzone PJ (1990) Ascorbyl free radical as a reliable indicator of free-radical-mediated myocardial ischemic and post-ischemic injury. A real-time continuous flow ESR study. Eur J Biochem 193:845–854

    Article  CAS  PubMed  Google Scholar 

  11. Masumizu T, Noda Y, Mori A, Packer L (2005) Electron spin resonance assay of ascorbyl radical generation in mouse hippocampal slices during and after kainate-induced seizures. Brain Res Brain Res Protoc 16:65–69

    Article  CAS  PubMed  Google Scholar 

  12. Wilson JX (1997) Antioxidant defense of the brain: a role for astrocytes. Can J Physiol Pharmacol 75:1149–1163

    Article  CAS  PubMed  Google Scholar 

  13. Siushansian R, Dixon SJ, Wilson JX (1996) Osmotic swelling stimulates ascorbate efflux from cerebral astrocytes. J Neurochem 66:1227–1233

    CAS  PubMed  Google Scholar 

  14. Siushansian R, Tao L, Dixon SJ, Wilson JX (1997) Cerebral astrocytes transport ascorbic acid and dehydroascorbic acid through distinct mechanisms regulated by cyclic AMP. J Neurochem 68:2378–2385

    Article  CAS  PubMed  Google Scholar 

  15. Layton ME, Samson FE, Pazdernik TL (1998) Kainic acid causes redox changes in cerebral cortex extracellular fluid: NMDA receptor activity increases ascorbic acid whereas seizure activity increases uric acid. Neuropharmacology 37:149–157

    Article  CAS  PubMed  Google Scholar 

  16. Layton ME, Pazdernik TL (1999) Reactive oxidant species in piriform cortex extracellular fluid during seizures induced by systemic kainic acid in rats. J Mol Neurosci 13:63–68

    Article  CAS  PubMed  Google Scholar 

  17. Muller A, Pietri S, Villain M, Fre’javille C, Bonne C, Culcasi M (1997) Free radicals in rabbit retina under ocular hyperpressure and functional consequences. Exp Eye Res 64:637–643

    Article  CAS  PubMed  Google Scholar 

  18. Pietri S, Seguin JR, d’Arbigny PD, Culcasi M (1994) Ascorbyl free radical: a noninvasive marker of oxidative stress in human open-heart surgery. Free Radic Biol Med 16:523–528

    Article  CAS  PubMed  Google Scholar 

  19. Pietri S, Séguin JR, d’Arbigny P, Drieu K, Culcasi M (1997) Ginkgo biloba extract (EGb 761) pretreatment limits free radical-induced oxidative stress in patients undergoing coronary bypass surgery. Cardiovasc Drugs Ther 11:121–131

    Article  CAS  PubMed  Google Scholar 

  20. Delmas-Beauvieux MC, Peuchant E, Thomas MJ, Dubourg L, Pinto AP, Clerc M, Gin H (1998) The place of electron spin resonance methods in the detection of oxidative stress in type 2 diabetes with poor glycemic control. Clin Biochem 31:221–228

    Article  CAS  PubMed  Google Scholar 

  21. Padayatty SJ, Katz A, Wang Y, Eck P, Kwon O, Lee JH, Chen S, Corpe C, Dutta A, Dutta SK, Levine M (2003) Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr 22:18–35

    CAS  PubMed  Google Scholar 

  22. Ueda Y, Yokoyama H, Nakajima A, Tokumaru J, Doi T, Mitsuyama Y (2002) Glutamate excess and free radical formation during and following kainic acid-induced status epilepticus. Exp Brain Res 147:219–226

    Article  CAS  PubMed  Google Scholar 

  23. Grünewald RA (1993) Ascorbic acid in the brain. Brain Res Brain Res Rev 18:123–133

    Article  PubMed  Google Scholar 

  24. Rebec GV, Pierce RC (1994) A vitamin as neuromodulator: ascorbate release into the extracellular fluid of the brain regulates dopaminergic and glutamatergic transmission. Prog Neurobiol 43:537–565

    Article  CAS  PubMed  Google Scholar 

  25. Walker MC, Galley PT, Errington ML, Shorvon SD, Jefferys JG (1995) Ascorbate and glutamate release in the rat hippocampus after perforant path stimulation: a “dialysis electrode” study. J Neurochem 65:725–731

    Article  CAS  PubMed  Google Scholar 

  26. Majewska MD, Bell JA, London ED (1990) Regulation of the NMDA receptor by redox phenomena: inhibitory role of ascorbate. Brain Res 537:328–332

    Article  CAS  PubMed  Google Scholar 

  27. Majewska MD, Bell JA (1990) Ascorbic acid protects neurons from injury induced by glutamate and NMDA. Neuroreport 1:194–196

    Article  CAS  PubMed  Google Scholar 

  28. Cammack J, Ghasemzadeh B, Adams RN (1994) The pharmacological profile of glutamate-evoked ascorbic acid efflux measured by in vivo electrochemistry. Brain Res 565:17–22

    Article  Google Scholar 

  29. Miele M, Boutelle MG, Fillenz M (1994) The physiologically induced release of ascorbate in rat brain is dependent on impulse traffic, calcium influx and glutamate uptake. Neuroscience 62:87–91

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We confirm that we have read the Journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.

Conflicts of Interest

None of the authors has any conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigekiyo Matsumoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumoto, S., Shingu, C., Koga, H. et al. An Electron Spin Resonance Study for Real-time Detection of Ascorbyl Free Radicals After Addition of Dimethyl Sulfoxide in Murine Hippocampus or Plasma During Kainic Acid-Induced Seizures. Neurochem Res 35, 1010–1016 (2010). https://doi.org/10.1007/s11064-010-0148-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0148-9

Keywords

Navigation