Skip to main content
Log in

Tyrosine Phosphorylation of Apoptotic Proteins During Hyperoxia in Mitochondria of the Cerebral Cortex of Newborn Piglets

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The present study tests the hypothesis that hyperoxia results in increased tyrosine phosphorylation of apoptotic proteins Bcl-2, Bcl-xl, Bax & Bad in the mitochondrial fraction of the cerebral cortex of newborn piglets. Twelve newborn piglets were divided into normoxic [Nx, n = 6], exposed to a FiO2 of 0.21 for 1 h and hyperoxic [Hyx, n = 6], exposed to FiO2 of 1.0 for 1 h. PaO2 in Hyx group was maintained at 400 mmHg while the Nx group was kept at 80 to100 mmHg. The density (O.D.x mm2) of phosphorylated Bcl2 protein on westernblot was 19.3 ± 3.6 in Nx and 41.5 ± 18.3 in Hyx, (P < 0.05). The density of phosphorylated Bcl-xl protein density was 26.9 ± 7.0 in Nx and 47.9 ± 2.5 in Hyx, (P < 0.05). Phosphorylated Bax density was 43.5 ± 5.0 in Nx and 43.3 ± 5.2 in Hyx. Phosphorylated Bad density was 23.6 ± 3.9 in Nx, 24.4 ± 4.7 in Hyx. The data show that during hyperoxia there is a significant increase in tyrosine phosphorylation of Bcl2 and Bcl-xl, while the phosphorylation of proapototic proteins Bax & Bad was not altered. We conclude that hyperoxia leads to post translational modification of anti apoptotic proteins Bcl2 and Bcl-xl in cerebral cortical mitochondria. We propose that phosphorylation of Bcl2 will result in loss of its antiapoptotic potential by preventing its dimerization with Bax leading to activation of the caspase pathway and subsequent neuronal death in the cerebral cortex of the newborn piglets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gerstner B, DeSilva TM, Genz K, Armstrong A, Brehmer F, Neve RL, Felderhoff-Mueser U, Volpe JJ, Rosenberg PA (2008) Hyperoxia causes maturation-dependent cell death in the developing white matter. J Neurosci 28:1236–1245

    Article  CAS  PubMed  Google Scholar 

  2. Weinberger B, Laskin DL, Heck DE, Laskin JD (2002) Oxygen toxicity in premature infants. Toxicol Appl Pharmacol 181:60–67

    Article  CAS  PubMed  Google Scholar 

  3. Lukkarinen HP, Laine J, Kaapa PO (2003) Lung epithelial cells undergo apoptosis in neonatal respiratory distress syndrome. Pediatr Res 53:254–259

    CAS  PubMed  Google Scholar 

  4. Métrailler-Ruchonnet I, Pagano A, Carnesecchi S, Ody C, Donati Y, Argiroffo CB (2007) Bcl-2 protects against hyperoxia-induced apoptosis through inhibitionof the mitochondria-dependent pathway. Free Radic Biol Med 42:1062–1074

    Article  PubMed  CAS  Google Scholar 

  5. Ribeiro Carvahlo CR, de Paula Pinto Schettino G, Maranho B, Pamplona Bethlem E (1998) Hyperoxia and lung diseas. Curr Opm Pulm Med 4:300–304

    Article  Google Scholar 

  6. Collins MP, Lorenz JM, Jetton JR, Paneth N (2001) Hypocapnia and other ventilation-related risk factors for cerebral palsy in low birth weight infants. Pediatr Res 509:712–719

    Article  Google Scholar 

  7. Felderhoff-Mueser U, Bittigau P, Sifringer M, Jarosz B, Korobowicz E, Mahler L, Piening T, Moysich A, Grune T, Thor F, Heumann R, Bührer C, Ikonomidou C (2004) Oxygen causes cell death in the developing brain. Neurobiol Dis 17:273–282

    Article  CAS  PubMed  Google Scholar 

  8. Klinger G, Beyene J, Shah P, Perlman M (2005) Do hyperoxaemia and hypocapnia add to the risk of brain injury after intrapartum asphyxia? Arch Dis Child Fetal Neonatal Ed 90:F49–F52

    Article  CAS  PubMed  Google Scholar 

  9. Del Maestro R, Thaw HH, Bjork J, Planker M, Arfors KE (1980) Free radicals as mediators of tissue injury. Acta Physiol Scand Suppl 492:43–57

    PubMed  Google Scholar 

  10. Jenkinson SG (1993) Oxygen toxicity. New Horiz 1:504–511

    CAS  PubMed  Google Scholar 

  11. Cacciuttolo MA, Trinh L, Lumpkin JA, Rao G (1993) Hyperoxia induces DNA damage in mammalian cells. Free Radic Biol Med 14:267–276

    Article  CAS  PubMed  Google Scholar 

  12. Janssen YM, Van Houten B, Borm PJ, Mossman BT (1993) Cell and tissue responses to oxidative damage. Lab Invest 69:261–274

    CAS  PubMed  Google Scholar 

  13. O’Reilly MA (2001) DNA damage and cell cycle checkpoints in hyperoxic lung injury: braking to facilitate repair. Am J Physiol Lung Cell Mol Physiol 281:L291–L305

    PubMed  Google Scholar 

  14. Wang X, Ryter SW, Dai C, Tang ZL, Watkins SC, Yin XM, Song R, Choi AM (2003) Necrotic cell death in response to oxidant stress involves the activation of the apoptogenic caspase-8/bid pathway. J Biol Chem 278:29184–29191

    Article  CAS  PubMed  Google Scholar 

  15. McDonald JW, Johnston MV (1990) Physiological and pathophysiological roles of excitatory aminoacids during central nervous system development. Brain Res Rev 15:41–70

    Article  PubMed  Google Scholar 

  16. Taglialatela G, Perez-Polo JR, Rassin DK (1998) Induction of apoptosis in the CNS during development by the combination of hyperoxia and inhibition of glutathione synthesis. Free Radic Biol Med 25(8):936–942

    Article  CAS  PubMed  Google Scholar 

  17. King KL, Cidlowski JA (1995) Cell cycle and apoptosis: common pathways to life and death. J Cell Biochem 58:175–180

    Article  CAS  PubMed  Google Scholar 

  18. Ratan RR, Murphy TH, Baraban JM (1994) Oxidative stress induces apoptosis in embryonic cortical neurons. J Neurochem 62:376–379

    Article  CAS  PubMed  Google Scholar 

  19. Oltvai Z, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74(4):609–619

    Article  CAS  PubMed  Google Scholar 

  20. Raff MC (1992) Social controls on cell survival and cell death. Nature 356:397–400

    Article  CAS  PubMed  Google Scholar 

  21. Chao DT, Korsemeyer SJ (1998) Bcl-2 family: regulators of cell death. Annu Rev Immunol 16:395–419

    Article  CAS  PubMed  Google Scholar 

  22. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619

    Article  CAS  PubMed  Google Scholar 

  23. Lagosklonny MV, Giannakakou P, El-Deiry WS, Kingston DG, Higgs PI, Neckers L, Fojo T (1997) Raf-1/bcl-2 phosphorylation: a step from microtubule damage to cell death. Cancer Res 57:130–135

    Google Scholar 

  24. Haldar S, Chintapalli J, Croce CM (1996) Taxol induces Bcl-2 phosphorylation and death of prostate cancer cells. Cancer Res 56:1253–1255

    CAS  PubMed  Google Scholar 

  25. Hu ZB, Minden MD, McCulloch EA (1998) Phosphorylation of Bcl-2 after exposure of human leukemic cells to retinoic acid. Blood 92:1768–1775

    CAS  PubMed  Google Scholar 

  26. St. Clair EG, Anderson SJ, Oltvai ZN (1997) Bcl-2 counters apoptosis by bax heterodimerization—dependent and—independent mechanisms in the T-cell lineage. J Biol Chem 272:29347–29355

    Article  CAS  PubMed  Google Scholar 

  27. Ito T, Deng X, Carr B, May WS (1997) Bcl-2 phosphorylation required for anti-apoptosis function. J Biol Chem 272:11671–11673

    Article  CAS  PubMed  Google Scholar 

  28. Lamprechet W, Stein P, Heinz F, Weissner H (1974) Creatine phosphate. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 4. Academic Press, New York, pp 1777–1781

    Google Scholar 

  29. Booth RFG, Patel TB, Clark JB (1980) The development of enzymes of energy metabolism in brain of a precocial (guinea pig) and noncocial (rat) species. J Neurochem 43:327–366

    Google Scholar 

  30. Brutus NA, Hanley S, Ashraf QM, Mishra OP, Delvoria-Papadopoulos M (2009) Effect of hyperoxia on Serine phosphorylation of apoptotic proteins in mitochondrial membranes of the cerebral cortex of newborn piglets. Neurochem Res 34:1219–1225

    Article  CAS  PubMed  Google Scholar 

  31. Chang E, Hornick K, Fritz KI, Mishra OP, Delivoria-Papadopoulos M (2007) Effect of hyperoxia on cortical neuronal nuclear function and programmed cell death mechanisms. Neurochem Res 32:1142–1149

    Article  CAS  PubMed  Google Scholar 

  32. Saugstad OD (2001) Resuscitation of the asphyxic newborn infant. New insight leads to new therapeutic possibilities. Biol Neonate 79:258–260

    Article  CAS  PubMed  Google Scholar 

  33. Capani F, Loidl CF, Aguirre F et al (2001) Changes in reactive oxygen species (ROS) production in rat brain during global perinatal asphyxia: an ESR study. Brain Res 914:204–207

    Article  CAS  PubMed  Google Scholar 

  34. Lievre V, Becuwe P, Bianchi A et al (2001) Intracellular generation of free radicals and modifications of detoxifying enzymes in cultured neurons from the developing rat forebrain in response to transient hypoxia. Neuroscience 105:287–297

    Article  CAS  PubMed  Google Scholar 

  35. Rosenberg AA, Murdaugh E, White CW (1989) The role of oxygen free radicals in postasphyxia cerebral hypoperfusion in newborn lambs. Pediatr Res 26:215–219

    Article  CAS  PubMed  Google Scholar 

  36. Temesvari P, Karg E, Bodi I et al (2001) Impaired early neurologic outcome in newborn piglets reoxygenated with 100 percent oxygen compared with room air after pneumothorax-induced asphyxia. Pediatr Res 49:812–819

    Article  CAS  PubMed  Google Scholar 

  37. Vento M, Asensi M, Sastre J et al (2003) Oxidative stress in asphyxiated term infants resuscitated with 100% oxygen. J Pediatr 142:240–246

    Article  CAS  PubMed  Google Scholar 

  38. Frank L, Sosenko IR (1991) Failure of premature rabbits to increase antioxidant enzymes during hyperoxic exposure: increased susceptibility to pulmonary oxygen toxicity compared with term rabbits. Pediatr Res 29:292–296

    CAS  PubMed  Google Scholar 

  39. Lockitch G, Jacobsen B, Quigley G, Dison P, Pendray M (1989) Selenium deficiency in low birthweight infants: an unrecognized problem. J Pediatr 114:865–870

    Article  CAS  PubMed  Google Scholar 

  40. Amin S, Chen SY, Collipp PJ, Castro-Magana M, Maddaiah VT, Klein SW (1980) Selenium in premature infants. Nutr Metab 24:331–340

    Article  CAS  PubMed  Google Scholar 

  41. Tubman R, Halliday HL, McMaster D (1990) Glutathione peroxidase and selenium levels in the preterm infant. Biol Neonate 58:305–310

    Article  CAS  PubMed  Google Scholar 

  42. Guertin F, Roy CC, Lepage G, Yousef I, Tuchweber B (1993) Liver membrane composition after short-term parenteral nutrition with and without taurine in guinea pigs. Proc Soc Exp Biol Med 203:418–423

    CAS  PubMed  Google Scholar 

  43. Van Zoeren-Grobben D, Lindeman JH, Houdkamp E, Brand R, Schrijver J, Berger HM (1994) Postnatal changes in plasma chain breaking antioxidants in healthy preterm infants fed formula and/or human milk. Am J Clin Nutr 60:900–906

    CAS  PubMed  Google Scholar 

  44. Parker J, Ashraf QM, Akhter W, Mishra OP, Delivoria-Papadopoulos M (2007) Effect of post-hypoxic reoxygenation on DNA fragmentation in cortical neuronal nuclei of newborn piglets. Neurosci Lett 412:273–277

    Article  CAS  PubMed  Google Scholar 

  45. Wang X, Zhang J, Kim HP, Wang Y, Choi AMK, Ryter SW (2004) Bcl-XL disrupts death-inducing signal complex formation in plasma membrane induced by hypoxia/reoxygenation. FASEB J 18:1826–1833

    Article  CAS  PubMed  Google Scholar 

  46. Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75:241–251

    Article  CAS  PubMed  Google Scholar 

  47. Kowaltowski AJ, Fenton RG, Fiskum G (2004) Bcl-2 family proteins regulate mitochondrial reactive oxygen production and protect against oxidative stress. Free Radic Biol Med 37:1845–1853

    Article  CAS  PubMed  Google Scholar 

  48. Jang JH, Surh YJ (2003) Potentiation of cellular antioxidant capacity by Bcl-2: implications for its antiapoptotic function. Biochem Pharmacol 66:1371–1379

    Article  CAS  PubMed  Google Scholar 

  49. Budinger GR, Tso M, McClintock DS, Dean DA, Sznajder JI, Chandel NS (2002) Hyperoxia-induced apoptosis does not require mitochondrial reactive oxygen species and is regulated by Bcl-2 proteins. J Biol Chem 277:15654–15660

    Article  CAS  PubMed  Google Scholar 

  50. Ward NS, Waxman AB, Homer RJ, Mantell LL, Einarsson O, Du Y, Elias JA (2000) Interleukin-6-induced protection in hyperoxic acute lung injury. Am J Respir Cell Mol Biol 22:535–542

    CAS  PubMed  Google Scholar 

  51. Saugstad OD (2005) Oxygen for newborns: how much is too much? J Perinatol 25(Suppl 2):S45–S49

    Article  PubMed  Google Scholar 

  52. Deulofeut R, Critz A, Adams-Chapman I, Sola A (2006) Avoiding hyperoxia in infants or 1250 g is associated with improved short- and long-term outcomes. J Perinatol 26:700–705

    Article  CAS  PubMed  Google Scholar 

  53. Short EJ, Klein NK, Lewis BA, Fulton S, Eisengart S, Kercsmar C, Baley J, Singer LT (2003) Cognitive and academic consequences of bronchopulmonary dysplasia and very low birth weight: 8-year old outcomes. Pediatrics 112:359

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Institutes of Health grants HD-38079 (OPM) and HD-20337 (MDP). The authors thank Mrs. Anli Zhu for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om P. Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mudduluru, M., Zubrow, A.B., Ashraf, Q.M. et al. Tyrosine Phosphorylation of Apoptotic Proteins During Hyperoxia in Mitochondria of the Cerebral Cortex of Newborn Piglets. Neurochem Res 35, 1003–1009 (2010). https://doi.org/10.1007/s11064-010-0147-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0147-x

Keywords

Navigation