Skip to main content

Advertisement

Log in

Flavonoids and Astrocytes Crosstalking: Implications for Brain Development and Pathology

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Flavonoids are naturally occurring polyphenolic compounds that are present in a variety of fruits, vegetables, cereals, tea, and wine, and are the most abundant antioxidants in the human diet. Evidence suggests that these phytochemicals might have an impact on brain pathology and aging; however, neither their mechanisms of action nor their cell targets are completely known. In the mature mammalian brain, astroglia constitute nearly half of the total cells, providing structural, metabolic, and trophic support for neurons. During the past few years, increasing knowledge of these cells has indicated that astrocytes are pivotal characters in neurodegenerative diseases and brain injury. Most of the physiological benefits of flavonoids are generally thought to be due to their antioxidant and free-radical scavenging effects; however, emerging evidence has supported the hypothesis that their mechanism of action might go beyond these properties. In this review, we focus on astrocytes as targets for flavonoids and their implications in brain development, neuroprotection, and glial tumor formation. Finally, we will briefly discuss the emerging view of astrocytes as essential characters in neurodegenerative diseases, and how a better understanding of the action of flavonoids might open new avenues to develop therapeutic approaches to these pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Virchow, 1846, quoted from Somjen GG (1988) Nervenkitt: notes on the history of the concept of neuroglia. Glia 1: 2–9

  2. Kettenmann H, Ransom BR (2005) Neuroglia, 2nd edn. Oxford University Press, USA

    Google Scholar 

  3. Lim DA, Alvarez‐Buylla A (1999) Interaction between astrocytes and adult subventricular zone precursors stimulates neurogenesis. Proc Natl Acad Sci USA 96:7526–7531

    CAS  PubMed  Google Scholar 

  4. Song H, Stevens CF, Gage FH (2002) Astroglia induce neurogenesis from adult neural stem cells. Nature 417:39–44

    CAS  PubMed  Google Scholar 

  5. Lie DC, Colamarino SA, Song HJ et al (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437:1370–1375

    CAS  PubMed  Google Scholar 

  6. de Sampaio e Spohr TCL, Choi JW, Gardell SE et al (2008) Lysophosphatidic acid receptor-dependent secondary effects via astrocytes promote neuronal differentiation. J Biol Chem 283:7470–7479

    CAS  PubMed  Google Scholar 

  7. Hatten ME (2002) New directions in neuronal migration. Science 297:1660–1663

    CAS  PubMed  Google Scholar 

  8. Garcia-Abreu J, Moura-Neto V, Carvalho SL et al (1995) Regionally specific properties of midbrain glia: I. Interactions with midbrain neurons. J Neurosci Res 40:417–477

    Google Scholar 

  9. Martinez R, Gomes FCA (2002) Neuritogenesis induced by thyroid hormone-treated astrocytes is mediated by epidermal growth factor/mitogen‐activated protein kinase‐phosphatidylinositol 3-kinase pathways and involves modulation of extracellular matrix proteins. J Biol Chem 51:49311–49318

    Google Scholar 

  10. Martinez R, Gomes FC (2005) Proliferation of cerebellar neurons induced by astrocytes treated with thyroid hormone is mediated by a cooperation between cell contact and soluble factors and involves the epidermal growth factor‐protein kinase a pathway. J Neurosci Res 3:341–349

    Google Scholar 

  11. Christopherson KS, Ullian EM, Stokes CC et al (2005) Thrombospondins are astrocyte secreted proteins that promote CNS synaptogenesis. Cell 120:421–433

    CAS  PubMed  Google Scholar 

  12. Stevens B, Allen NJ, Vazquez LE et al (2007) The classical complement cascade mediates CNS synapse elimination. Cell 6:1164–1178

    Google Scholar 

  13. Gomes FCA, Garcia-Abreu J, Galou M et al (1999) Neurons induce GFAP gene promoter of cultured astrocytes from transgenic mice. Glia 26:97–108

    CAS  PubMed  Google Scholar 

  14. de Sampaio e Spohr TCL, Martinez R, Federowicz ES et al (2002) Neuron-glia interaction effects on GFAP gene: a novel role for transforming growth factor-β1. Eur J Neurosci 16:2059–2069

    PubMed  Google Scholar 

  15. Schmid RS, McGrath B, Berechid BE et al (2003) Neuregulin1-erbB2 signaling is required for the establishment of radial glia and their transformation into astrocytes in cerebral cortex. Neuroscience 100:4251–4256

    CAS  Google Scholar 

  16. Sousa VO, Romão L, Moura Neto V et al (2004) Glial fibrillary acidic protein gene promoter is differently modulated by transforming growth factor-beta 1 in astrocytes from distinct brain regions. Eur J Neurosci 19:1721–1730

    Google Scholar 

  17. Barnabé-Heider F, Wasylnka JA, Fernandes KJL et al (2005) Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron 48:253–265

    PubMed  Google Scholar 

  18. Stipursky J, Gomes FCA (2007) TGF-β1/SMAD signaling induces astrocyte fate commitment in vitro: implications for radial glia development. Glia 55:1023–1033

    PubMed  Google Scholar 

  19. Noctor SC, Flint AC, Weissman TA et al (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720

    CAS  PubMed  Google Scholar 

  20. Alvarez-Buylla A, Lim DA (2004) For the long run: maintaining germinal niches in the adult brain. Neuron 41:683–686

    CAS  PubMed  Google Scholar 

  21. Stipursky J, de Sampaio e Spohr TCL, Romão L, Gomes FCA (2010) Neuron-astrocyte interaction in cell fate commitment in the central nervous system. In: Stem cells: from tools for studying mechanism of neuronal differentiation towards therapy, vol 11. Springer, pp 145–170

  22. Cahoy J, Emery B, Kaushal A et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278

    CAS  PubMed  Google Scholar 

  23. Vesce S, Bezzi P, Volterra A (1999) The active role of astrocytes in synaptic transmission. Cell Mol Life Sci 56:991–1000

    CAS  PubMed  Google Scholar 

  24. Landis DM (1994) The early reactions of non-neuronal cells to brain injury. Annu Rev Neurosci 17:133–151

    CAS  PubMed  Google Scholar 

  25. Abbott NJ (2002) Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat 200:629–638

    CAS  PubMed  Google Scholar 

  26. Kim JH, Kim JH, Park JA (2006) Blood-neural barrier: intercellular communication at glio-vascular interface. J Biochem Mol Biol 39:339–345

    CAS  PubMed  Google Scholar 

  27. Chamak B, Prochiantz A (1989) Influence of extracellular matrix proteins on the expression of neuronal polarity. Development 3:483–491

    Google Scholar 

  28. Gomes FC, de Sampaio e Spohr TC, Martinez R, Moura Neto V (2001) Cross-talk between neurons and glia: highlights on soluble factors. Braz J Med Biol Res 34:611–620

    CAS  PubMed  Google Scholar 

  29. Alvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22:629–634

    CAS  PubMed  Google Scholar 

  30. Goldman SA, Nottebohm F (1983) Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci USA 80:2390–2394

    CAS  PubMed  Google Scholar 

  31. Doetsch F, Caille I, Lim DA (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    CAS  PubMed  Google Scholar 

  32. Seri B, García-Verdugo JM, McEwen BS et al (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21:7153–7160

    CAS  PubMed  Google Scholar 

  33. Bushong EA, Martone ME, Jones YZ et al (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 1:183–192

    Google Scholar 

  34. Araque A, Parpura V, Sanzgiri RP et al (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 5:208–215

    Google Scholar 

  35. Pfrieger FW, Barres BA (1997) Synaptic efficacy enhanced by glial cells in vitro. Science 277:1684–1687

    CAS  PubMed  Google Scholar 

  36. Ullian EM, Christopherson KS, Barres BA (2004) Role for glia in synaptogenesis. Glia 47:209–216

    PubMed  Google Scholar 

  37. Ullian EM, Sapperstein SK, Christopherson KS (2001) Control of synapse number by glia. Science 291:657–661

    CAS  PubMed  Google Scholar 

  38. Nägler K, Mauch DH, Pfrieger FW (2001) Glia‐derived signals induce synapse formation in neurones of the rat central nervous system. J Physiol 533:665–679

    PubMed  Google Scholar 

  39. Johnson MA, Weick JP, Pearce RA (2007) Functional neural development from human embryonic stem cells: accelerated synaptic activity via astrocyte coculture. J Neurosci 12:3069–3077

    Google Scholar 

  40. Parpura V, Haydon PG (2000) Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc Natl Acad Sci USA 15:8629–8634

    Google Scholar 

  41. Goritz C, Mauch D, Pfrieger FW (2005) Multiple mechanisms mediate cholesterol induced synaptogenesis in a CNS neuron. Mol Cell Neurosci 29:190–201

    CAS  PubMed  Google Scholar 

  42. Feng Z, Ko CP (2008) Schwann cells promote synaptogenesis at the neuromuscular junction via transforming growth factor‐beta1. J Neurosci 39:9599–9609

    Google Scholar 

  43. Koizumi S, Fujishita K, Tsuda M (2003) Dynamic inhibition of excitatory synaptic transmission by astrocyte‐derived ATP in hippocampal cultures. Proc Natl Acad Sci USA 19:11023–11028

    Google Scholar 

  44. Yang KW, Lee KW, Kim SH (2006) The effect of epigallocatechin gallate on suppressing disease progression of ALS model mice. Neurosci Lett 395:103–107

    PubMed  Google Scholar 

  45. Nishiyama H, Knopfel T, Endo S (2002) Glial protein S100β modulates long‐term neuronal synaptic plasticity. Proc Natl Acad Sci USA 99:4037–4042

    CAS  PubMed  Google Scholar 

  46. Bezzi P, Volterra A (2001) A neuron‐glia signalling network in the active brain. Curr Opin Neurobiol 11:387–394

    CAS  PubMed  Google Scholar 

  47. Wilhelmsson U, Bushong EA, Price DL et al (2006) Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc Natl Acad Sci U S A 103:17513–17518

    CAS  PubMed  Google Scholar 

  48. Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36:180–190

    CAS  PubMed  Google Scholar 

  49. Ridet JL, Malhotra SK, Privat A et al (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577

    CAS  PubMed  Google Scholar 

  50. Sawada M, Kondo N, Suzumura A et al (1989) Production of tumor necrosis factor-alpha by microglia and astrocytes in culture. Brain Res 491:394–397

    CAS  PubMed  Google Scholar 

  51. Becher B, Prat A, Antel JP (2000) Brain-immune connection: Immuno regulatory properties of CNS resident cells. Glia 29:293–304

    CAS  PubMed  Google Scholar 

  52. Dietrich PY, Walker PR, Saas P (2003) Death receptors on reactive astrocytes: a key role in the fine tuning of brain inflammation? Neurology 60:548–554

    PubMed  Google Scholar 

  53. Gerlach M, Double KL, Ben-Shachar D et al (2003) Neuromelanin and its interaction with iron as a potential risk factor for dopaminergic neurodegeneration underlying Parkinson’s disease. Neurotoxicol Res 5:35–44

    Google Scholar 

  54. Schipper HM (1996) Astrocytes, brain aging, and neurodegeneration. Neurobiology 17:467–480

    CAS  Google Scholar 

  55. Minghetti L, Levi G (1998) Microglia as effector cells in brain damage and repair: Focus on prostanoids and nitric oxide. Prog Neurobiol 54:99–125

    CAS  PubMed  Google Scholar 

  56. Minghetti L, Levi G (1998) Microglia as effector cells in brain damage and repair: Focus on prostanoids and nitric oxide. Prog Neurobiol 54:99–125

    CAS  PubMed  Google Scholar 

  57. Gonzalez-Scarano F, Baltuch G (1999) Microglia as mediators of inflammatory and degenerative diseases. Annu Rev Neurosci 22:219–240

    CAS  PubMed  Google Scholar 

  58. Barbeito LH, Pehar M, Cassina P (2004) A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis. Brain Res Brain Res Rev 47:263–274

    CAS  PubMed  Google Scholar 

  59. DeWitt DA (1998) Astrocytes regulate microglial phagocytosis of senile plaque cores of Alzheimer’s disease. Exp Neurol 149:329–340

    CAS  PubMed  Google Scholar 

  60. Wisniewski HM, Wegiel J (1991) Spatial relationships between astrocytes and classical plaque components. Neurobiol Aging 12:593–600

    CAS  PubMed  Google Scholar 

  61. Nagele RG (2004) Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiol Aging 25:663–674

    CAS  PubMed  Google Scholar 

  62. Nutt JG, Wooten GF (2005) Clinical practice: diagnosis and initial management of Parkinson’s disease. N Engl J Med 353:1021–1027

    CAS  PubMed  Google Scholar 

  63. Klegeris A, McGeer EG, McGeer PL (2007) Therapeutic approaches to inflammation in neurodegenerative disease. Curr Opin Neurol 20:351–357

    CAS  PubMed  Google Scholar 

  64. Forno LS (1992) Astrocytes and Parkinson’s disease. Prog Brain Res 94:429–436

    CAS  PubMed  Google Scholar 

  65. Mena MA (2008) Glial cells as players in parkinsonism: the “good”, the “bad”, and the “mysterious” glia. Neuroscientist 14:544–560

    CAS  PubMed  Google Scholar 

  66. Bruijn LI, Becher MW, Lee MK (1997) ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18:327–338

    CAS  PubMed  Google Scholar 

  67. Howland DS (2002) Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci USA 99:1604–1609

    CAS  PubMed  Google Scholar 

  68. Patel SA, Maragakis NJ (2002) Amyotrophic lateral sclerosis: pathogenesis, differential diagnoses, and potential interventions. J Spinal Cord Med 25:262–273

    PubMed  Google Scholar 

  69. Kleihues P, Louis DN, Scheithauer BW (2002) The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol 61:215–225

    PubMed  Google Scholar 

  70. Brandes AA, Tosoni A, Franceschi E (2008) Glioblastoma in adults. Crit Rev Oncol Hematol 67:139–152

    PubMed  Google Scholar 

  71. Shih AH, Holland EC (2004) Developmental neurobiology and the origin of brain tumors. J Neurooncol 70:125–136

    PubMed  Google Scholar 

  72. Louis DN, Holland EC, Cairncross JG (2001) Glioma classification: a molecular reappraisal. Am J Pathol 159:779–786

    CAS  PubMed  Google Scholar 

  73. Wild-Bode C, Weller M, Rimner A et al (2001) Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res 61:2744–2750

    CAS  PubMed  Google Scholar 

  74. Huse JT, Holland EC (2009) Genetically engineered mouse models of brain cancer and the promise of preclinical testing. Brain Pathol 19:132–143

    CAS  PubMed  Google Scholar 

  75. Bent MJ, Hegi ME, Stupp R (2006) Recent developments in the use of chemotherapy in brain tumours. Eur J Cancer 42:582–588

    PubMed  Google Scholar 

  76. Chambaut-Guérin AM, Costa SL, Lefrançois T et al (2000) Effects of retinoic acid and tumor necrosis factor alpha on GL-15 glioblastoma cells. Neuronreporter 11:389–393

    Google Scholar 

  77. Costa SL, Paillaud E, Fages C (2001) Effects of a novel synthetic retinoid on malignant glioma in vitro: inhibition of cell proliferation, induction of apoptosis and differentiation. Eur J Cancer 37:520–530

    CAS  PubMed  Google Scholar 

  78. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    CAS  PubMed  Google Scholar 

  79. Gerstner ER, Duda DG, Di Tomaso E et al (2007) Antiangiogenic agents for the treatment of glioblastoma. Expert Opin Investig Drugs 16:1895–1908

    CAS  PubMed  Google Scholar 

  80. Brandsma D, Stalpers L, Taal W et al (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9:453–461

    PubMed  Google Scholar 

  81. Feldmann KA (2001) Cytochrome P450s as genes for crop improvement. Curr Opin Plant Biol 4:162–167

    CAS  PubMed  Google Scholar 

  82. Beecher GR (2003) Overview of dietary flavonoids: nomenclature, occurrence and intake. J Nutr 133:3248S–3254S

    CAS  PubMed  Google Scholar 

  83. Harborne JB (1986) Nature, distribution and function of plant flavonoids. Prog Clin Biol Res 213:15–24

    CAS  PubMed  Google Scholar 

  84. Manach C, Scalbert A, Morand C et al (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    CAS  PubMed  Google Scholar 

  85. Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042

    CAS  PubMed  Google Scholar 

  86. Wang Y, Ho CT (2009) Polyphenolic chemistry of tea and coffee: a century of progress. J Agric Food Chem 57:8109–8114

    CAS  PubMed  Google Scholar 

  87. Hou L, Zhou B, Yang L et al (2004) Inhibition of human low density lipoprotein oxidation by flavonols and their glycosides. Chem Phys Lipids 129:209–219

    CAS  PubMed  Google Scholar 

  88. Halliwell B (1998) Can oxidative DNA damage be used as a biomarker of cancer risk in humans? Problems, resolutions and preliminary results from nutritional supplementation studies. Free Radic Res 6:469–486

    Google Scholar 

  89. Williams RJ, Spencer JPE, Rice-Evans C (2004) Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 36:838–849

    CAS  PubMed  Google Scholar 

  90. Spencer JPE, Rice-Evans C, Williams RJ (2003) Modulation of pro-survival Akt/PKB & ERK1/2 signalling cascades by quercetin and its in vivo metabolites underlie their action on neuronal viability. J Biol Chem 278:34783–34793

    CAS  PubMed  Google Scholar 

  91. Galli RL, Shukitt-Hale B, Youdim KA (2002) Fruit polyphenolics and brain aging: nutritional interventions targeting age-related neuronal and behavioral deficits. Ann N Y Acad Sci 959:128–132

    Article  CAS  PubMed  Google Scholar 

  92. Unno K, Takabayashi F, Kishido T (2004) Suppressive effect of green tea catechins on morphologic and functional regression of the brain in aged mice with accelerated senescence. Exp Gerontol 39:1027–1034

    CAS  PubMed  Google Scholar 

  93. Haque AM, Hashimoto M, Katakura M et al (2006) Long-term administration of green tea catechins improves spatial cognition learning ability in rats. J Nutr 136:1043–1047

    CAS  PubMed  Google Scholar 

  94. Kuriyama S, Hozawa A, Ohmori K (2006) Green tea consumption and cognitive function: a cross-sectional study from the Tsurugaya Project. Am J Clin Nutr 83:355–361

    CAS  PubMed  Google Scholar 

  95. Wang Y, Wang L, Wu J et al (2006) The in vivo synaptic plasticity mechanism of EGb 761-induced enhancement of spatial learning and memory in aged rats. Br J Pharmacol 148:147–153

    CAS  PubMed  Google Scholar 

  96. Rice-Evans C (2001) Flavonoid antioxidants. Curr Med Chem 8:797–807

    CAS  PubMed  Google Scholar 

  97. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    CAS  PubMed  Google Scholar 

  98. Abd El Mohsen MM, Kuhnle G, Rechner AR (2002) Uptake and metabolism of epicatechin and its access to the brain after oral ingestion. Free Radic Biol Med 33:1693–1702

    CAS  PubMed  Google Scholar 

  99. Schroeter H, Spencer JPE, Rice-Evans C (2001) Flavonoids protect neurons from oxidized low-density-lipoprotein-induced apoptosis involving c-Jun N-terminal kinase (JNK), c-Jun and caspase-3. Biochem J 358:547–557

    CAS  PubMed  Google Scholar 

  100. Youdim KA, Qaiser MZ, Begley DJ (2004) Flavonoid permeability across an in situ model of the blood-brain barrier. Free Radic Biol Med 36:592–604

    CAS  PubMed  Google Scholar 

  101. Silva AR, Pinheiro AM, Souza CS et al (2008) The flavonoid rutin induces astrocyte and microglia activation and regulates TNF-alpha and NO release in primary glial cell cultures. Cell Biol Toxicol 24:75–86

    CAS  PubMed  Google Scholar 

  102. Bahia PK, Rattray M, Williams RJ (2008) Dietary flavonoid (-)epicatechin stimulates phosphatidylinositol 3-kinase-dependent anti-oxidant response element activity and up-regulates glutathione in cortical astrocytes. J Neurochem 106:2194–2204

    CAS  PubMed  Google Scholar 

  103. Wu BY, Yu AC (2000) Quercetin inhibits c-fos, heat shock protein, and glial fibrillary acidic protein expression in injured astrocytes. J Neurosci Res 62:730–736

    CAS  PubMed  Google Scholar 

  104. Gitika B, Sai Ram M, Sharma SK (2006) Quercetin protects C6 glial cells from oxidative stress induced by tertiary-butylhydroperoxide. Free Radic Res 40:95–102

    CAS  PubMed  Google Scholar 

  105. Sharma V, Mishra M, Ghosh S et al (2007) Modulation of interleukin-1 mediated inflammatory response in human astrocytes by flavonoids: implications in neuroprotection. Brain Res Bull 73:55–63

    CAS  PubMed  Google Scholar 

  106. Almeida LMV, Pinheiro CC, Leite MC et al (2008) Protective effects of resveratrol. toxicity in primary cortical astrocyte. Neurochem Res 33:8–15

    CAS  Google Scholar 

  107. de Sampaio e de Sampaio e Spohr TC, Stipursky J, Sasaki AC et al (2010) Effects of the flavonoid casticin from Brazilian Croton betulaster in cerebral cortical progenitors in vitro: direct and indirect action through astrocytes. J Neurosci Res 88:530–541

    PubMed  Google Scholar 

  108. Ross JA, Kasum CM (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr 22:19–34

    CAS  PubMed  Google Scholar 

  109. Singh M, Arseneault M, Sanderson T et al (2008) Challenges for research on polyphenols from foods in Alzheimer’s disease: bioavailability, metabolism, and cellular and molecular mechanisms. J Agric Food Chem 56:4855–4873

    CAS  PubMed  Google Scholar 

  110. Scheck AC, Perry K, Hank NC (2006) Anticancer activity of extracts derived from the mature roots of Scutellaria baicalensis on human malignant brain tumor cells. BMC Comp Alt Med 6:1–9

    Google Scholar 

  111. Ferguson PJ, Kurowska EM, Freeman DJ et al (2006) In vivo inhibition of growth on human tumor lines by flavonoid fractions from cranberry extract. J In Nutri Cancer 56:86–94

    CAS  Google Scholar 

  112. Braganhol E, Zamin LL, Canedo AD et al (2006) Antiproliferative effect of quercetin in the human U138MG glioma cell line. Anticancer Drugs 17(6):663–671

    CAS  PubMed  Google Scholar 

  113. Sharma V, Joseph C, Ghosh S (2007) Kaempferol induces apoptosis in glioblastoma cells through oxidative stress. Mol Cancer Ther 6:2544–2553

    CAS  PubMed  Google Scholar 

  114. Son YG, Kim EH, Kim JY (2007) Silibinin sensitizes human glioma cells to TRAIL-Mediated Apoptosis via DR5 Up-regulation and Down-regulation of c-FLIP and Survivin. Cancer Res 67:8274–8284

    CAS  PubMed  Google Scholar 

  115. Amado NG, Cerqueira DM, Menezes FS (2009) Isoquercitrin isolated from Hyptis fasciculata reduces glioblastoma cell proliferation and changes beta-catenin cellular localization. Anticancer Drugs 20:543–552

    CAS  PubMed  Google Scholar 

  116. Barbosa PR, Martins D, Fascio M et al (2004) Benzoyl-methylpolyols from Croton species (Euphorbiaceae). Arkivoc 6:95–102

    Google Scholar 

  117. Stoclet JC, Chataigneau T, Ndiaye M et al (2004) Vascular protection by dietary polyphenols. Eur J Pharmacol 500:299–313

    CAS  PubMed  Google Scholar 

  118. Duthie SJ (2007) Berry phytochemicals, genomic stability and cancer: evidence for chemoprotection at several stages in the carcinogenic process. Mol Nutr Food Res 51:665–674

    CAS  PubMed  Google Scholar 

  119. Manach C, Mazur A, Scalbert A (2005) Polyphenols and prevention of cardiovascular diseases. Curr Opin Lipidol 16:77–84

    CAS  PubMed  Google Scholar 

  120. Vauzour D, Vafeiadou K, Rodriguez-Mateos A et al (2008) The neuroprotective potential of flavonoids: a multiplicity of effects. Genes Nutr 3:115–126

    CAS  PubMed  Google Scholar 

  121. De Rijk MC, Breteler MM, den Breeijen JH et al (1997) Dietary antioxidants and Parkinson disease. The Rotterdam Study. Arch Neurol 54:762–765

    PubMed  Google Scholar 

  122. Engelhart MJ, Geerlings MI, Ruitenberg A (2002) Dietary intake of antioxidants and risk of Alzheimer disease. AMA 26:3223–3229

    Google Scholar 

  123. Hellenbrand W, Seidler A, Boeing H et al (1996) Diet and Parkinson’s disease. I: A possible role for the past intake of specific foods and food groups. Results from a self-administered food-frequency questionnaire in a case-control study. Neurology 47:636–643

    CAS  PubMed  Google Scholar 

  124. Costa BL, Fawcett R, Li GY et al (2008) Orally administered epigallocatechin gallate attenuates light-induced photoreceptor damage. Brain Res Bull 1:412–423

    Google Scholar 

  125. Lau FC, Shukitt-Hale B, Joseph JA (2005) The beneficial effects of fruit polyphenols on brain aging. Biochem Pharmacol 5:339–345

    Google Scholar 

  126. Rainey-Smith S, Schroetke LW, Bahia P (2008) Neuroprotective effects of hesperetin in mouse primary neurones are independent of CREB activation. Neurosci Lett 438:29–33

    CAS  PubMed  Google Scholar 

  127. Mandel S, Maor G, Youdim MB (2004) Iron and alpha-synuclein in the substantia nigra of MPTP-treated mice: effect of neuroprotective drugs R-apomorphine and green tea polyphenol (-)-epigallocatechin-3-gallate. J Mol Neurosci 24:401–416

    CAS  PubMed  Google Scholar 

  128. Simonyi A, Wang Q, Miller RL et al (2005) Polyphenols in cerebral ischemia: novel targets for neuroprotection. Mol Neurobiol 31:135–147

    CAS  PubMed  Google Scholar 

  129. Nijveldt RJ, van Nood E, van Hoorn DE (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74:418–425

    CAS  PubMed  Google Scholar 

  130. Schwarting RK, Huston JP (1997) Behavioral and neurochemical dynamics of neurotoxic meso-striatal dopamine lesions. Neurotoxicology 18:689–708

    CAS  PubMed  Google Scholar 

  131. Levites Y, Weinreb O, Maor G et al (2001) Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem 78:1073–1082

    CAS  PubMed  Google Scholar 

  132. Marambaud P, Zhao H, Davies P (2005) Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. J Biol Chem 280:37377–37382

    CAS  PubMed  Google Scholar 

  133. Rezai-Zadeh K, Shytle D, Sun N (2005) Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 25:8807–88014

    CAS  PubMed  Google Scholar 

  134. Bastianetto S, Yao ZX, Papadopoulos V et al (2006) Neuroprotective effects of green and black teas and their catechin gallate esters against beta-amyloid-induced toxicity. Eur J Neurosci 23:55–64

    PubMed  Google Scholar 

  135. Choi YT, Jung CH, Lee SR (2001) The green tea polyphenol (-)-epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci 70:603–614

    CAS  PubMed  Google Scholar 

  136. Oken BS, Storzbach DM, Kaye JA (1998) The efficacy of Ginkgo biloba on cognitive function in Alzheimer disease. Arch Neurol 55:1409–1415

    CAS  PubMed  Google Scholar 

  137. Obregon DF, Rezai-Zadeh K, Bai Y et al (2006) ADAM10 activation is required for green tea (-)-epigallocatechin-3-gallate-induced alpha-secretase cleavage of amyloid precursor protein. J Biol Chem 281:16419–16427

    CAS  PubMed  Google Scholar 

  138. Weinreb O, Mandel S, Amit T et al (2004) Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases. J Nutr Biochem 15:506–516

    CAS  PubMed  Google Scholar 

  139. Zafrilla P, Morillas JM, Rubio-Perez JM et al (2009) Ingredients for functional drinks in neurodegenerative diseases: a review. Nat Prod Commun 4:719–740

    CAS  PubMed  Google Scholar 

  140. Lobsiger CS, Cleveland DW (2007) Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease. Nat Neurosci 11:1355–1360

    Google Scholar 

  141. Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nature Clinical Practice 12:679–689

    Google Scholar 

  142. Marchetto MC, Muotri AR, Mu Y (2008) Non-cell-autonomous effect of human SOD1G37R astrocytes on motor neurons derived from human embryonic stem cells. Cell Stem Cell 3:649–657

    CAS  PubMed  Google Scholar 

  143. Xu Z, Chen S, Li X et al (2006) Neuroprotective effects of (-)-epigallocatechin-3-gallate in a transgenic mouse model of amyotrophic lateral sclerosis. Neurochem Res 10:1263–1269

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Janet W. Reid, JWR Associates, Biological Consulting and Editing Services for revising the English text. This study was supported by grants from the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flávia Carvalho Alcantara Gomes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nones, J., Stipursky, J., Costa, S.L. et al. Flavonoids and Astrocytes Crosstalking: Implications for Brain Development and Pathology. Neurochem Res 35, 955–966 (2010). https://doi.org/10.1007/s11064-010-0144-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0144-0

Keywords

Navigation