Neurochemical Research

, Volume 35, Issue 7, pp 986–993 | Cite as

Effect of Combination Treatment of Rapamycin and Isoflavones on mTOR Pathway in Human Glioblastoma (U87) Cells

  • Shilpa Puli
  • Aditi Jain
  • James C. K. Lai
  • Alok BhushanEmail author
Original Paper


Glioblastoma Multiforme (GBM) is a malignant primary brain tumor associated with poor survival rate. PI3K/Akt pathway is highly upregulated in gliomas due to deletion or mutation of PTEN and its activation is associated with tumor grade. mTOR is downstream from PI3K/Akt pathway and it initiates translation through its action on S6K and 4E-BP1. mTOR is an important therapeutic target in many cancers, including glioblastomas. Rapamycin and its analogues are known to inhibit mTOR pathway; however, they also show simultaneous upregulation of Akt and eIF4E survival pathways on inhibition of mTOR, rendering cells more resistant to rapamycin treatment. In this study we investigated the effect of combination treatment of rapamycin with isoflavones such as genistein and biochanin A on mTOR pathway and activation of Akt and eIF4E in human glioblastoma (U87) cells. Our results show that combination treatment of rapamycin with isoflavones, especially biochanin A at 50 μM, decreased the phosphorylation of Akt and eIF4E proteins and rendered U87 cells more sensitive to rapamycin treatment when compared to cells treated with rapamycin alone. These results suggest the importance of combining chemopreventive with chemotherapeutic agents in order to increase the efficacy of chemotherapeutic drugs.


Glioblastoma Rapamycin Isoflavones mTOR 



Our work was supported, in part, by grants from Faculty Research Committee grant # 937, and University Research Committee grant # FY2002-09 at Idaho State University, and NIH/NCRR INBRE grant # P20RR16454. We thank Eric Neilson for his technical help.


  1. 1.
    Central Brain Tumor Registry of the Unites States. Statistical report: primary brain tumors in the Unites States, 2000–2004. CBTRUS; 2007-2008Google Scholar
  2. 2.
    Kufe DW, Pollock RE, Weichselbaum RR et al (2004) Cancer Medicine 6. BC Decker, New York, pp 1195–1231Google Scholar
  3. 3.
    Jeffrey Bruce: Glioblastoma Multiforme. eMedicine February, (2005)Google Scholar
  4. 4.
    Baldwin RM, Parolin DA, Lorimer IA (2008) Regulation of glioblastoma cell invasion by PKC iota and RhoB. Oncogene 27(25):3587–3595CrossRefPubMedGoogle Scholar
  5. 5.
    Tremont-Lukats IW, Gilbert MR (2003) Advances in molecular therapies in patients with brain tumors. Cancer Control 10(2):125–137PubMedGoogle Scholar
  6. 6.
    Omuro AM, Faivre S, Raymond E (2007) Lessons learned in the development of targeted therapy for malignant gliomas. Mol Cancer Ther 6(7):1909–1919CrossRefPubMedGoogle Scholar
  7. 7.
    Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2:489–501CrossRefPubMedGoogle Scholar
  8. 8.
    Wong AJ, Bigner SH, Bigner DD et al (1987) Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci 84:6899–6903CrossRefPubMedGoogle Scholar
  9. 9.
    Ohgaki H (2005) Genetic pathways to glioblastomas. Neuropathology 25(1):1–7CrossRefPubMedGoogle Scholar
  10. 10.
    Choe G, Horvath S, Cloughesy TF et al (2003) Analysis of the phosphatidylinositol 3′-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res 63:2742–2746PubMedGoogle Scholar
  11. 11.
    Chakravarti A, Zhai G, Suzuki Y et al (2004) The prognostic significance of phosphotidylinositol 3-kinase pathway activation in human gliomas. J Clin Oncol 22(10):1926–1933CrossRefPubMedGoogle Scholar
  12. 12.
    Cheng JQ, Nicosia SV (2001) AKT signal transduction pathway in oncogenesis. Encylopedia reference of cancer. Springer, Berlin, pp 35–37Google Scholar
  13. 13.
    Koul D, Shen R, Bergh S et al (2006) Inhibition of Akt survival pathway by a small-molecule inhibitor in human glioblastoma. Mol Can Therap 5(3):637–644CrossRefGoogle Scholar
  14. 14.
    Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945CrossRefPubMedGoogle Scholar
  15. 15.
    Kaper F, Dornhoefer N, Giaccia AJ (2006) Mutation in the PI3K/PTEN/TSC2 pathway contribute to mammalian target of rapamycin activity and increased translation under hypoxic conditions. Cancer Res 66(3):1561–1569CrossRefPubMedGoogle Scholar
  16. 16.
    Bjornsti MA, Houghton PJ (2004) The TOR pathway: a target of cancer therapy. Nat Rev Cancer 4:335–348CrossRefPubMedGoogle Scholar
  17. 17.
    Hidalgo M, Rowinsky EK (2000) The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene 19:6680–6686CrossRefPubMedGoogle Scholar
  18. 18.
    Dutcher JP (2004) Mammalian target of rapamycin inhibition. Clin Cancer Res 10:6382–6387CrossRefGoogle Scholar
  19. 19.
    Gingras AC, Raught B, Sonenberg N (2001) Regulation of translation initiation by FRAP/mTOR. Genes Dev 15:807–826CrossRefPubMedGoogle Scholar
  20. 20.
    Huang S, Houghton PJ (2002) Inhibitors of mammalian target of rapamycin as novel antitumor agents: from bench to clinic. Curr Opinion Invest Drugs 3:295–304Google Scholar
  21. 21.
    Dudkin L, Dilling MB, Cheshire PJ et al (2001) Biochemical correlates of mTOR inhibition by the rapamycin ester CC1–779 and tumor growth inhibition. Clin Cancer Res 7:1758–1764PubMedGoogle Scholar
  22. 22.
    Chen J, Fang Y (2004) A novel pathway regulating the mammalian target of rapamycin (mTOR) signaling. Biochem Pharmacol 64:1071–1077CrossRefGoogle Scholar
  23. 23.
    Wei LH, Su H, Hildebrandt IJ et al (2008) Changes in tumor metabolism as readout for mammalian target of rapamycin kinase inhibition by rapamycin in glioblastoma. Clin Cancer Res 14(11):3416–3426CrossRefPubMedGoogle Scholar
  24. 24.
    Reardon DA, Desjardins A, Vredenburgh JJ et al. (2010) Phase 2 trial of erlotinib plus sirolimus in adults with recurrent glioblastoma. J Neurooncol 96(2):219–230CrossRefPubMedGoogle Scholar
  25. 25.
    Yu K, Toral-Barza L, Discafani C et al (2001) mTOR, a novel target in breast cancer: the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer. Endocr Relat Cancer 8:249–258CrossRefPubMedGoogle Scholar
  26. 26.
    Gao N, Zhang Z, Jiang BH et al (2003) Role of PI3K/AKT/mTOR signaling in the cell cycle progression of human prostate cancer. Biochem Biophys Res Commun 310(4):1124–1132CrossRefPubMedGoogle Scholar
  27. 27.
    Galanis E, Buckner JC, Maurer MJ et al (2005) Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a north central cancer treatment group study. J Clin Oncol 23(23):5294–5304CrossRefPubMedGoogle Scholar
  28. 28.
    Duerr EM, Rollbrocker B, Hayashi Y et al (1998) PTEN mutations in gliomas and glioneuronal tumors. Oncogene 16(17):2259–2264CrossRefPubMedGoogle Scholar
  29. 29.
    Neshat MS, Mellinghoff IK, Tran C et al (2001) Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. PNAS 98(18):10314–10319CrossRefPubMedGoogle Scholar
  30. 30.
    Huang S, Houghton PJ (2001) Resistance to rapamycin: a novel anticancer drug. Cancer Metastasis Rev 20(1–2):69–78CrossRefPubMedGoogle Scholar
  31. 31.
    Huang S, Houghton PJ (2001) Mechanisms of resistance to rapamycins. Drug Resist Updat 4(6):378–391CrossRefPubMedGoogle Scholar
  32. 32.
    Cloughesy TF, Yoshimoto K, Nghiemphu P et al (2008) Antitumor activity of rapamycin in a phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med 5(1):e8CrossRefPubMedGoogle Scholar
  33. 33.
    Rao RD, Mladek AC, Lamont JD et al (2005) Disruption of parallel and converging signaling pathways contributes to the synergistic antitumor effects of simultaneous mTOR and EGFR inhibition in GBM cells. Neoplasia 7(10):921–929CrossRefPubMedGoogle Scholar
  34. 34.
    Goudar RK, Shi Q, Hjelmeland MD et al (2005) Combination therapy of inhibitors of epidermal growth factor receptor/vascular endothelial growth factor receptor 2 (AEE788) and the mammalian target of rapamycin (RAD001) offers improved glioblastoma tumor growth inhibition. Mol Cancer Ther 4(1):101–112PubMedGoogle Scholar
  35. 35.
    Doherty L, Gigas DC, Kesari S et al (2006) Pilot study of the combination of EGFR and mTOR inhibitors in recurrent malignant gliomas. Neurology 67(1):156–158CrossRefPubMedGoogle Scholar
  36. 36.
    Kreisl TN, Lassman AB, Mischel PS et al (2009) A pilot study of everolimus and gefitinib in the treatment of recurrent glioblastoma (GBM). J Neurooncol 92(1):99–105CrossRefPubMedGoogle Scholar
  37. 37.
    Paternot S, Roger PP (2009) Combined inhibition of MEK and mammalian target of rapamycin abolishes phosphorylation of cyclin-dependent kinase 4 in glioblastoma cell lines and prevents their proliferation. Cancer Res 69(11):4577–4581CrossRefPubMedGoogle Scholar
  38. 38.
    Costa LJ, Gemmill RM, Drabkin HA (2007) Upstream signaling inhibition enhances rapamycin effect on growth of kidney cancer cells. Urology 69(3):596–602CrossRefPubMedGoogle Scholar
  39. 39.
    Persky V, Van Horn L (1995) Epidemiology of soy and cancer: perspectives and directions. J Nutr 125(3):709S–712SPubMedGoogle Scholar
  40. 40.
    Barnes S, Peterson TG (1995) Biochemical targets of the isoflavone genistein in tumor cell lines. Proc Soc Exp Biol Med 208(1):103–108PubMedGoogle Scholar
  41. 41.
    Fotsis T, Pepper M, Adlercreutz H et al (1993) Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc Natl Acad Sci USA 90(7):2690–2694CrossRefPubMedGoogle Scholar
  42. 42.
    Akiyama T, Ishida J, Nakagawa S et al (1987) Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 262(12):5592–5595PubMedGoogle Scholar
  43. 43.
    Lee YS, Seo JS, Chung HT et al (1991) Inhibitory effects of biochanin A on mouse lung tumor induced by benzo(a)pyrene. J Korean Med Sci 6(4):325–328PubMedGoogle Scholar
  44. 44.
    Hempstock J, Kavanagh JP, George NJ (1998) Growth inhibition of prostate cell lines in vitro by phyto-oestrogens. Br J Urol 82(4):560–563PubMedGoogle Scholar
  45. 45.
    Rice L, Samedi VG, Medrano TA et al (2002) Mechanisms of the growth inhibitory effects of the isoflavonoid biochanin A on LNCaP cells and xenografts. Prostate 52(3):201–212CrossRefPubMedGoogle Scholar
  46. 46.
    Penar PL, Khoshyomn S, Bhushan A et al (1997) Inhibition of epidermal growth factor receptor-associated tyrosine kinase blocks glioblastoma invasion of the brain. Neurosurgery 40(1):141–151CrossRefPubMedGoogle Scholar
  47. 47.
    Penar PL, Khoshyomn S, Bhushan A et al (1998) Inhibition of glioma invasion of fetal brain aggregates. In Vivo 12(1):75–84PubMedGoogle Scholar
  48. 48.
    Sehdev V, Lai JC, Bhushan A (2009) Biochanin A modulates cell viability, invasion and growth promoting signaling pathways in HER-2-positive breast cancer cells. J Oncol (In Press)Google Scholar
  49. 49.
    Puli S, Bhushan A, Lai JC (2006) Inhibition of matrix degrading enzymes and invasion in human glioblastoma (U87MG) cells by isoflavones. J Neurooncol 79(2):135–142CrossRefPubMedGoogle Scholar
  50. 50.
    Sun SY, Rosenberg LM, Wang X et al (2005) Activation of Akt and eIF4E survival pathways by rapamycin mediated mammalian target of rapamycin inhibition. Cancer Res 65(16):7052–7058CrossRefPubMedGoogle Scholar
  51. 51.
    Hu X, Pandolfi PP, Li Y et al (2005) mTOR promotes survival and astrocytic characteristics induced by Pten/Akt signaling in glioblastoma. Neoplasia 7(4):356–368CrossRefPubMedGoogle Scholar
  52. 52.
    Dilling MB, Dias P, Shapiro DN et al (1994) Rapamycin selectively inhibits the growth of childhood rhabdomyosarcoma cells through inhibition of signaling via the type I insulin-like growth factor receptor. Cancer Res 54(4):903–907PubMedGoogle Scholar
  53. 53.
    Hosoi H, Dilling MB, Liu LN et al (1998) Studies on the mechanism of resistance to rapamycin in human cancer cells. Mol Pharmacol 54:815–824PubMedGoogle Scholar
  54. 54.
    Eshleman JS, Carlson BL, Mladek AC et al (2002) Inhibition of the mammalian target of rapamycin sensitizes U87 xenografts to fractionated radiation therapy. Cancer Res 62:7291–7297PubMedGoogle Scholar
  55. 55.
    Heimberger AB, Wang E, McGary EC et al (2005) Mechanism of action of rapamycin in gliomas. Neuro Oncol 7(1):1–11CrossRefPubMedGoogle Scholar
  56. 56.
    Haruta T, Uno T, Kawahara J et al (2000) A rapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-1. Mol Endocrinol 14(6):783–789CrossRefPubMedGoogle Scholar
  57. 57.
    Kim DH, Sarbassov DD, Ali SM et al (2002) mTOR interacts with raptor to form nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163–175CrossRefPubMedGoogle Scholar
  58. 58.
    Oshiro N, Yoshino K, Hidayat S et al (2004) Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells 9:359–366CrossRefPubMedGoogle Scholar
  59. 59.
    Sarbassov DD, Guertin DA, Ali SM et al (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101CrossRefPubMedGoogle Scholar
  60. 60.
    Dowling RJ, Pollak M, Sonenberg N (2009) Current status and challenges associated with targeting mTOR for cancer therapy. Bio Drugs 23(2):77–91Google Scholar
  61. 61.
    Gulati N, Karsy M, Albert L et al (2009) Involvement of mTORC1 and mTORC2 in regulation of glioblastoma multiforme growth and motility. Int J Oncol 35(4):731–740PubMedGoogle Scholar
  62. 62.
    Toschi A, Lee E, Xu L et al (2009) Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin. Mol Cell Biol 29(6):1411–1420CrossRefPubMedGoogle Scholar
  63. 63.
    Masri J, Bernath A, Martin J et al (2007) mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor. Cancer Res 67(24):11712–11720CrossRefPubMedGoogle Scholar
  64. 64.
    Werzowa J, Cejka D, Fuereder T et al (2009) Suppression of mTOR complex 2-dependent AKT phosphorylation in melanoma cells by combined treatment with rapamycin and LY294002. Br J Dermatol 160(5):955–964CrossRefPubMedGoogle Scholar
  65. 65.
    Reardon DA, Quinn JA, Vredenburgh JJ et al (2006) Phase 1 trial of gefitinib plus sirolimus in adults with recurrent malignant glioma. Clin Can Res 12(3):860–868CrossRefGoogle Scholar
  66. 66.
    Wendel HG, De Stanchina E, Fridman JS et al (2004) Survival signaling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428(6980):267–269CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Shilpa Puli
    • 1
  • Aditi Jain
    • 1
  • James C. K. Lai
    • 1
  • Alok Bhushan
    • 1
    Email author
  1. 1.Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy and Idaho Biomedical Research InstituteIdaho State UniversityPocatelloUSA

Personalised recommendations