Skip to main content
Log in

Cruciferous Nutraceutical 3H-1,2-dithiole-3-thione Protects Human Primary Astrocytes Against Neurocytotoxicity Elicited by MPTP, MPP+, 6-OHDA, HNE and Acrolein

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Astrocytes possess important roles in maintaining normal brain function and providing trophic support to the neurons. They also suffer a range of toxic insults, being a chief target of prooxidants such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1-methyl-4-phenylpyridinium (MPP+), 6-hydroxydopamine (6-OHDA), 4-hydroxy-2-nonenal (HNE), and acrolein. Recently, we have observed that the cellular antioxidants and phase 2 enzymes can be upregulated by 3H-1,2-dithiole-3-thione (D3T), a nutraceutical found in cruciferous vegetables, against many prooxidants in human neuroblastoma cell lines (SH-SY5Y). However, the regulation of the above cellular factors by D3T in astrocytes and their role in ameliorating the neurotoxic effects of the above neurotoxins have not been investigated. In this study, we show that incubation of human primary astrocytes with micromolar concentrations (5–100 μM) of D3T for 24 h resulted in significant increases in the levels of reduced glutathione (GSH), glutathione reductase (GR), and the phase 2 enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1). D3T treatment also caused time-dependent increases in mRNA expression of the gamma-glutamylcysteine ligase catalytic subunit (GCLC), GR, and of NQO1 in these cells. Pretreatment of astrocytes with D3T was found to afford remarkable protection against the neurocytotoxicity elicited by MPTP, MPP+, 6-OHDA, HNE and acrolein. Taken together, this study demonstrates for the first time that in human astrocytes, the cruciferous nutraceutical D3T potently induces the cellular GSH system and the phase 2 enzyme NQO1, which is accompanied by dramatically increased resistance of these cells to the damage induced by various neurotoxicants. The results of this study may have important implications for the development of novel neuroprotective strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

6-OHDA:

6-Hydroxydopamine

BSA:

Bovine serum albumin

CDNB:

1-Chloro-2,4-dinitrobenzene

D3T:

3H-1,2-dithiole-3-thione

DCIP:

2,6-Dichloroindophenol

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GCLC:

γ-Glutamylcysteine ligase catalytic subunit

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Reduced glutathione

GSSG:

Oxidized form of glutathione

GST:

Glutathione S-transferase

HNE:

4-Hydroxy-2-nonenal

MAO:

Monoamine oxidase

MPP+ :

1-Methyl-4-phenylpyridinium

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MTT:

3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium

NQO1:

NAD(P)H:quinone oxidoreductase 1

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  1. Ischiropoulos H, Beckman JS (2003) Oxidative stress and nitration in neurodegeneration: cause, effect, or association? J Clin Invest 111:163–169

    PubMed  CAS  Google Scholar 

  2. Liu J, Mori A (1999) Stress, aging, and brain oxidative damage. Neurochem Res 24:1479–1497. doi:10.1023/A:1022597010078

    Article  PubMed  CAS  Google Scholar 

  3. Alam ZI, Daniel SE, Lees AJ, Marsden DC, Jenner P, Halliwell B (1997) A generalised increase in protein carbonyls in the brain in Parkinson’s but not incidental Lewy body disease. J Neurochem 69:1326–1329

    PubMed  CAS  Google Scholar 

  4. Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, Marsden CD, Jenner P, Halliwell B (1997) Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem 69:1196–1203

    PubMed  CAS  Google Scholar 

  5. Selley ML (1998) (E)-4-hydroxy-2-nonenal may be involved in the pathogenesis of Parkinson’s disease. Free Radic Biol Med 25:169–174. doi:10.1016/S0891-5849(98)00021-5

    Article  PubMed  CAS  Google Scholar 

  6. Olanow CW, Tatton WG (1999) Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 22:123–144. doi:10.1146/annurev.neuro.22.1.123

    Article  PubMed  CAS  Google Scholar 

  7. Ebadi M, Srinivasan SK, Baxi MD (1996) Oxidative stress and antioxidant therapy in Parkinson’s disease. Prog Neurobiol 48:1–19. doi:10.1016/0301-0082(95)00029-1

    Article  PubMed  CAS  Google Scholar 

  8. Kidd PM (2000) Parkinson’s disease as multifactorial oxidative neurodegeneration: implications for integrative management. Altern Med Rev 5:502–529

    PubMed  CAS  Google Scholar 

  9. Beal MF (1995) Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 38:357–366. doi:10.1002/ana.410380304

    Article  PubMed  CAS  Google Scholar 

  10. Bains JS, Shaw CA (1997) Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res Brain Res Rev 25:335–358. doi:10.1016/S0165-0173(97)00045-3

    Article  PubMed  CAS  Google Scholar 

  11. Maccioni RB, Munoz JP, Barbeito L (2001) The molecular bases of Alzheimer’s disease and other neurodegenerative disorders. Arch Med Res 32:367–381. doi:10.1016/S0188-4409(01)00316-2

    Article  PubMed  CAS  Google Scholar 

  12. Berg D, Gerlach M, Youdim MB, Double KL, Zecca L, Riederer P, Becker G (2001) Brain iron pathways and their relevance to Parkinson’s disease. J Neurochem 79:225–236. doi:10.1046/j.1471-4159.2001.00608.x

    Article  PubMed  CAS  Google Scholar 

  13. Kimelberg HK, Norenberg MD (1989) Astrocytes. Sci Am 260:66–72, 74, 76

    Google Scholar 

  14. Di Monte DA, Wu EY, Langston JW (1992) Role of astrocytes in MPTP metabolism and toxicity. Ann N Y Acad Sci 648:219–228. doi:10.1111/j.1749-6632.1992.tb24541.x

    Article  PubMed  CAS  Google Scholar 

  15. Adams JD Jr, Klaidman LK, Leung AC (1993) MPP+ and MPDP+ induced oxygen radical formation with mitochondrial enzymes. Free Radic Biol Med 15:181–186. doi:10.1016/0891-5849(93)90057-2

    Article  PubMed  CAS  Google Scholar 

  16. Rojas P, Rios C (1993) Increased striatal lipid peroxidation after intracerebroventricular MPP+ administration to mice. Pharmacol Toxicol 72:364–368. doi:10.1111/j.1600-0773.1993.tb01345.x

    Article  PubMed  CAS  Google Scholar 

  17. Dringen R, Kussmaul L, Gutterer JM, Hirrlinger J, Hamprecht B (1999) The glutathione system of peroxide detoxification is less efficient in neurons than in astroglial cells. J Neurochem 72:2523. doi:10.1046/j.1471-4159.1999.0722523.x

    Article  PubMed  CAS  Google Scholar 

  18. Drukarch B, Schepens E, Jongenelen CAM, Stoof JC, Langeveld CH (1997) Astrocyte-mediated enhancement of neuronal survival is abolished by glutathione deficiency. Brain Res 770:123–130. doi:10.1016/S0006-8993(97)00790-7

    Article  PubMed  CAS  Google Scholar 

  19. Peuchen S, Bolanos JP, Heales SJR, Almeida A, Duchen MR, Clark JB (1997) Interrelationships between astrocyte function, oxidative stress and antioxidant status within the central nervous system. Prog Neurobiol 52:261–281. doi:10.1016/S0301-0082(97)00010-5

    Article  PubMed  CAS  Google Scholar 

  20. Wilson JX (1997) Antioxidant defense of the brain: a role for astrocytes. Can J Physiol Pharmacol 75:1149–1163. doi:10.1139/cjpp-75-10-11-1149

    Article  PubMed  CAS  Google Scholar 

  21. Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671. doi:10.1016/S0301-0082(99)00060-X

    Article  PubMed  CAS  Google Scholar 

  22. Chen Y, Vartiainen NE, Ying W, Chan PH, Koistinaho J, Swanson RA (2001) Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. J Neurochem 77:1601–1610. doi:10.1046/j.1471-4159.2001.00374.x

    Article  PubMed  CAS  Google Scholar 

  23. Lai CT, Yu PH (1997) Dopamine- and l-beta-3, 4-dihydroxyphenylalanine hydrochloride (l-Dopa)-induced cytotoxicity towards catecholaminergic neuroblastoma SH-SY5Y cells. Effects of oxidative stress and antioxidative factors. Biochem Pharmacol 53:363–372. doi:10.1016/S0006-2952(96)00731-9

    Article  PubMed  CAS  Google Scholar 

  24. Pong K, Doctrow SR, Baudry M (2000) Prevention of 1-methyl-4-phenylpyridinium- and 6-hydroxydopamine-induced nitration of tyrosine hydroxylase and neurotoxicity by EUK-134, a superoxide dismutase and catalase mimetic, in cultured dopaminergic neurons. Brain Res 881:182–189. doi:10.1016/S0006-8993(00)02841-9

    Article  PubMed  CAS  Google Scholar 

  25. Mazzio E, Huber J, Darling S, Harris N, Soliman KF (2001) Effect of antioxidants on l-glutamate and N-methyl-4-phenylpyridinium ion induced-neurotoxicity in PC12 cells. Neurotoxicology 22:283–288. doi:10.1016/S0161-813X(01)00017-1

    Article  PubMed  CAS  Google Scholar 

  26. Stull ND, Polan DP, Iacovitti L (2002) Antioxidant compounds protect dopamine neurons from death due to oxidative stress in vitro. Brain Res 931:181–185. doi:10.1016/S0006-8993(02)02269-2

    Article  PubMed  CAS  Google Scholar 

  27. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716. doi:10.2165/00002512-200118090-00004

    Article  PubMed  CAS  Google Scholar 

  28. Martinovits G, Melamed E, Cohen O, Rosenthal J, Uzzan A (1986) Systemic administration of antioxidants does not protect mice against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1, 2, 5, 6-tetrahydropyridine (MPTP). Neurosci Lett 69:192–197. doi:10.1016/0304-3940(86)90602-6

    Article  PubMed  CAS  Google Scholar 

  29. Perry TL, Yong VW, Hansen S, Jones K, Bergeron C, Foulks JG, Wright JM (1987) Alpha-tocopherol and beta-carotene do not protect marmosets against the dopaminergic neurotoxicity of N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. J Neurol Sci 81:321–331. doi:10.1016/0022-510X(87)90106-7

    Article  PubMed  CAS  Google Scholar 

  30. Shoulson I (1998) DATATOP: a decade of neuroprotective inquiry. Parkinson Study Group. Deprenyl and tocopherol antioxidative therapy of Parkinsonism. Ann Neurol 44:S160–S166

    PubMed  CAS  Google Scholar 

  31. Ratnam DV, Ankola DD, Bhardwaj V, Sahana DK, Kumar MN (2006) Role of antioxidants in prophylaxis and therapy: a pharmaceutical perspective. J Control Release 113:189–207. doi:10.1016/j.jconrel.2006.04.015

    Article  PubMed  CAS  Google Scholar 

  32. Jia Z, Zhu H, Misra HP, Li Y (2008) Potent induction of total cellular GSH and NQO1 as well as mitochondrial GSH by 3H–1, 2-dithiole-3-thione in SH-SY5Y neuroblastoma cells and primary human neurons: protection against neurocytotoxicity elicited by dopamine, 6-hydroxydopamine, 4-hydroxy-2-nonenal, or hydrogen peroxide. Brain Res 1197:159–169. doi:10.1016/j.brainres.2007.12.044

    Article  PubMed  CAS  Google Scholar 

  33. Cao Z, Hardej D, Trombetta LD, Trush MA, Li Y (2003) Induction of cellular glutathione and glutathione S-transferase by 3H–1, 2-dithiole-3-thione in rat aortic smooth muscle A10 cells: protection against acrolein-induced toxicity. Atherosclerosis 166:291–301. doi:10.1016/S0021-9150(02)00331-3

    Article  PubMed  CAS  Google Scholar 

  34. Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226. doi:10.1016/0003-2697(76)90326-2

    Article  PubMed  CAS  Google Scholar 

  35. Benson AM, Hunkeler MJ, Talalay P (1980) Increase of NAD(P)H:quinone reductase by dietary antioxidants: possible role in protection against carcinogenesis and toxicity. Proc Natl Acad Sci USA 77:5216–5220. doi:10.1073/pnas.77.9.5216

    Article  PubMed  CAS  Google Scholar 

  36. Spitz DR, Oberley LW (1989) An assay for superoxide dismutase activity in mammalian tissue homogenates. Anal Biochem 179:8–18. doi:10.1016/0003-2697(89)90192-9

    Article  PubMed  CAS  Google Scholar 

  37. Jia Z, Hallur S, Zhu H, Li Y, Misra HP (2008) Potent upregulation of glutathione and NAD(P)H:quinone oxidoreductase 1 by alpha-lipoic acid in human neuroblastoma SH-SY5Y cells: protection against neurotoxicant-elicited cytotoxicity. Neurochem Res 33:790–800. doi:10.1007/s11064-007-9496-5

    Article  PubMed  CAS  Google Scholar 

  38. Wheeler CR, Salzman JA, Elsayed NM, Omaye ST, Korte DW Jr (1990) Automated assays for superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity. Anal Biochem 184:193–199. doi:10.1016/0003-2697(90)90668-Y

    Article  PubMed  CAS  Google Scholar 

  39. Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121. doi:10.1016/S0076-6879(84)05015-1

    Article  PubMed  CAS  Google Scholar 

  40. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  41. Cao Z, Zhu H, Zhang L, Zhao X, Zweier JL, Li Y (2006) Antioxidants and phase 2 enzymes in cardiomyocytes: chemical inducibility and chemoprotection against oxidant and simulated ischemia-reperfusion injury. Exp Biol Med (Maywood) 231:1353–1364

    CAS  Google Scholar 

  42. Zhu H, Zhang L, Trush MA, Li Y (2007) Upregulation of endogenous glutathione system by 3H–1, 2-dithiole-3-thione in pancreatic RINm5F beta-cells as a novel strategy for protecting against oxidative beta-cell injury. Free Radic Res 41:242–250. doi:10.1080/10715760601009586

    Article  PubMed  CAS  Google Scholar 

  43. Kehrer JP (1993) Free radicals as mediators of tissue injury and disease. Crit Rev Toxicol 23:21–48. doi:10.3109/10408449309104073

    Article  PubMed  CAS  Google Scholar 

  44. Spencer JP, Jenner P, Daniel SE, Lees AJ, Marsden DC, Halliwell B (1998) Conjugates of catecholamines with cysteine and GSH in Parkinson’s disease: possible mechanisms of formation involving reactive oxygen species. J Neurochem 71:2112–2122

    Article  PubMed  CAS  Google Scholar 

  45. Siegel D, Bolton EM, Burr JA, Liebler DC, Ross D (1997) The reduction of alpha-tocopherolquinone by human NAD(P)H: quinone oxidoreductase: the role of alpha-tocopherolhydroquinone as a cellular antioxidant. Mol Pharmacol 52:300–305

    PubMed  CAS  Google Scholar 

  46. Siegel D, Gustafson DL, Dehn DL, Han JY, Boonchoong P, Berliner LJ, Ross D (2004) NAD(P)H:quinone oxidoreductase 1: role as a superoxide scavenger. Mol Pharmacol 65:1238–1247. doi:10.1124/mol.65.5.1238

    Article  PubMed  CAS  Google Scholar 

  47. Ross D (2004) Quinone reductases multitasking in the metabolic world. Drug Metab Rev 36:639–654. doi:10.1081/DMR-200033465

    Article  PubMed  CAS  Google Scholar 

  48. Zafar KS, Inayat-Hussain SH, Siegel D, Bao A, Shieh B, Ross D (2006) Overexpression of NQO1 protects human SK-N-MC neuroblastoma cells against dopamine-induced cell death. Toxicol Lett 166:261–267. doi:10.1016/j.toxlet.2006.07.340

    Article  PubMed  CAS  Google Scholar 

  49. Di Monte DA, Schipper HM, Hetts S, Langston JW (1995) Iron-mediated bioactivation of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) in glial cultures. Glia 15:203–206. doi:10.1002/glia.440150213

    Article  PubMed  CAS  Google Scholar 

  50. Volkel W, Sicilia T, Pahler A, Gsell W, Tatschner T, Jellinger K, Leblhuber F, Riederer P, Lutz WK, Gotz ME (2006) Increased brain levels of 4-hydroxy-2-nonenal glutathione conjugates in severe Alzheimer’s disease. Neurochem Int 48:679–686. doi:10.1016/j.neuint.2005.12.003

    Article  PubMed  CAS  Google Scholar 

  51. de Lau LML, Bornebroek M, Witteman JCM, Hofman A, Koudstaal PJ, Breteler MMB (2005) Dietary fatty acids and the risk of Parkinson disease the Rotterdam study. Neurology 64:2040–2045. doi:10.1212/01.WNL.0000166038.67153.9F

    Article  PubMed  CAS  Google Scholar 

  52. Heo HJ, Lee CY (2006) Phenolic phytochemicals in cabbage inhibit amyloid? protein-induced neurotoxicity. LWT-Food Sci Technol 39:331–337. doi:10.1016/j.lwt.2005.02.018

    Article  CAS  Google Scholar 

  53. Mattson MP, Son TG, Camandola S (2007) Viewpoint: mechanisms of action and therapeutic potential of neurohormetic phytochemicals. Dose Response 5:174–186

    Article  PubMed  CAS  Google Scholar 

  54. Joshipura KJ, Ascherio A, Manson JE, Stampfer MJ, Rimm EB, Speizer FE, Hennekens CH, Spiegelman D, Willett WC (1999) Fruit and vegetable intake in relation to risk of ischemic stroke. JAMA 282:1233–1239. doi:10.1001/jama.282.13.1233

    Article  PubMed  CAS  Google Scholar 

  55. Ullah MF, Khan MW (2008) Food as medicine: potential therapeutic tendencies of plant derived polyphenolic compounds. Asian Pac J Cancer Prev 9:187–195

    PubMed  Google Scholar 

  56. Anderson ME (1998) Glutathione: an overview of biosynthesis and modulation. Chem Biol Interact 111–112:1–14. doi:10.1016/S0009-2797(97)00146-4

    Article  PubMed  Google Scholar 

  57. Kobayashi M, Yamamoto M (2006) Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv Enzyme Regul 46:113–140. doi:10.1016/j.advenzreg.2006.01.007

    Article  PubMed  CAS  Google Scholar 

  58. Zhu H, Itoh K, Yamamoto M, Zweier JL, Li Y (2005) Role of Nrf2 signaling in regulation of antioxidants and phase 2 enzymes in cardiac fibroblasts: protection against reactive oxygen and nitrogen species-induced cell injury. FEBS Lett 579:3029–3036. doi:10.1016/j.febslet.2005.04.058

    Article  PubMed  CAS  Google Scholar 

  59. Zhu H, Zhang L, Itoh K, Yamamoto M, Ross D, Trush MA, Zweier JL, Li Y (2006) Nrf2 controls bone marrow stromal cell susceptibility to oxidative and electrophilic stress. Free Radic Biol Med 41:132–143. doi:10.1016/j.freeradbiomed.2006.03.020

    Article  PubMed  CAS  Google Scholar 

  60. Dringen R, Gutterer JM, Hirrlinger J (2000) Glutathione metabolism in brain. Eur J Biochem 267:4912–4916. doi:10.1046/j.1432-1327.2000.01597.x

    Article  PubMed  CAS  Google Scholar 

  61. Bona E, Hagberg H, Løberg EM, Bagenholm R, Thoresen M (1998) Protective effects of moderate hypothermia after neonatal hypoxia-ischemia: short-and long-term outcome. Pediatr Res 43:738. doi:10.1203/00006450-199806000-00005

    Article  PubMed  CAS  Google Scholar 

  62. Lowndes HE, Beiswanger CM, Philbert MA, Reuhl KR (1994) Substrates for neural metabolism of xenobiotics in adult and developing brain. Neurotoxicology 15:61–73

    PubMed  CAS  Google Scholar 

  63. Perry TL, Yong VW (1986) Idiopathic Parkinson’s disease, progressive supranuclear palsy and glutathione metabolism in the substantia nigra of patients. Neurosci Lett 67:269–274. doi:10.1016/0304-3940(86)90320-4

    Article  PubMed  CAS  Google Scholar 

  64. Heales SJ, Lam AA, Duncan AJ, Land JM (2004) Neurodegeneration or neuroprotection: the pivotal role of astrocytes. Neurochem Res 29:513–519. doi:10.1023/B:NERE.0000014822.69384.0f

    Article  PubMed  CAS  Google Scholar 

  65. Zang LY, Misra HP (1993) Generation of reactive oxygen species during the monoamine oxidase-catalyzed oxidation of the neurotoxicant, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Biol Chem 268:16504–16512

    PubMed  CAS  Google Scholar 

  66. Zang LY, Misra HP (1992) Superoxide radical production during the autoxidation of 1-methyl-4-phenyl-2,3-dihydropyridinium perchlorate. J Biol Chem 267:17547–17552

    PubMed  CAS  Google Scholar 

  67. Sriram K, Pai KS, Boyd MR, Ravindranath V (1997) Evidence for generation of oxidative stress in brain by MPTP: in vitro and in vivo studies in mice. Brain Res 749:44–52. doi:10.1016/S0006-8993(96)01271-1

    Article  PubMed  CAS  Google Scholar 

  68. Hasegawa E, Takeshige K, Oishi T, Murai Y, Minakami S (1990) 1-Methyl-4-phenylpyridinium (MPP+) induces NADH-dependent superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles. Biochem Biophys Res Commun 170:1049–1055. doi:10.1016/0006-291X(90)90498-C

    Article  PubMed  CAS  Google Scholar 

  69. Lotharius J, O’Malley KL (2000) The parkinsonism-inducing drug 1-methyl-4-phenylpyridinium triggers intracellular dopamine oxidation. A novel mechanism of toxicity. J Biol Chem 275:38581–38588. doi:10.1074/jbc.M005385200

    Article  PubMed  CAS  Google Scholar 

  70. Smith TS, Bennett JP Jr (1997) Mitochondrial toxins in models of neurodegenerative diseases. I: In vivo brain hydroxyl radical production during systemic MPTP treatment or following microdialysis infusion of methylpyridinium or azide ions. Brain Res 765:183–188. doi:10.1016/S0006-8993(97)00429-0

    Article  PubMed  CAS  Google Scholar 

  71. Grant CM, Perrone G, Dawes IW (1998) Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 253:893–898. doi:10.1006/bbrc.1998.9864

    Article  PubMed  CAS  Google Scholar 

  72. Smythies J (1999) The neurotoxicity of glutamate, dopamine, iron and reactive oxygen species: functional interrelationships in health and disease: a review-discussion. Neurotox Res 1:27–39

    Article  PubMed  CAS  Google Scholar 

  73. Shimizu E, Hashimoto K, Komatsu N, Iyo M (2002) Roles of endogenous glutathione levels on 6-hydroxydopamine-induced apoptotic neuronal cell death in human neuroblastoma SK-N-SH cells. Neuropharmacology 43:434–443. doi:10.1016/S0028-3908(02)00108-9

    Article  PubMed  CAS  Google Scholar 

  74. Kehrer JP, Biswal SS (2000) The molecular effects of acrolein. Toxicol Sci 57:6–15. doi:10.1093/toxsci/57.1.6

    Article  PubMed  CAS  Google Scholar 

  75. Calingasan NY, Uchida K, Gibson GE (1999) Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer’s disease. J Neurochem 72:751–756. doi:10.1046/j.1471-4159.1999.0720751.x

    Article  PubMed  CAS  Google Scholar 

  76. Lovell MA, Xie C, Markesbery WR (2000) Acrolein, a product of lipid peroxidation, inhibits glucose and glutamate uptake in primary neuronal cultures. Free Radic Biol Med 29:714–720. doi:10.1016/S0891-5849(00)00346-4

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grant R01HL071190 and a grant from Harvey Peters Research Center Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunbo Li or Hara P. Misra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, Z., Zhu, H., Li, Y. et al. Cruciferous Nutraceutical 3H-1,2-dithiole-3-thione Protects Human Primary Astrocytes Against Neurocytotoxicity Elicited by MPTP, MPP+, 6-OHDA, HNE and Acrolein. Neurochem Res 34, 1924–1934 (2009). https://doi.org/10.1007/s11064-009-9978-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-9978-8

Keywords

Navigation