Neurochemical Research

, Volume 34, Issue 4, pp 639–659 | Cite as

Senescence-Accelerated Mouse (SAM) with Special References to Neurodegeneration Models, SAMP8 and SAMP10 Mice



The SAM strains, a group of related inbred strains consisting of senescence-prone inbred strains (SAMP) and senescence-resistant inbred strains (SAMR), have been successfully developed by selective inbreeding of the AKR/J strain of mice donated by the Jackson laboratory in 1968. The characteristic feature of aging common to the SAMP and SAMR is accelerated senescence and normal aging, respectively. Furthermore, SAMP and SAMR strains of mice manifest various pathobiological phenotypes spontaneously. Among SAMP strains, SAMP8 and SAMP10 mice show age-related behavioral deterioration such as deficits in learning and memory, emotional disorders (reduced anxiety-like behavior and depressive behavior) and altered circadian rhythm associated with certain pathological, biochemical and pharmacological changes. Here, the previous and recent literature on SAM mice are reviewed with an emphasis on SAMP8 and SAMP10 mice. A spontaneous model like SAM with distinct advantages over the gene-modified model is hoped by investigators to be used more widely as a biogerontological resource to explore the etiopathogenesis of accelerated senescence and neurodegenerative disorders.


Animal model Neurodegeneration model Senescence-accelerated mouse (SAM) SAM SAMP8 SAMP10 SAMR1 Aging Accelerated senescence Lifespan Genetic profile Behavior Neurobiology Deficits in learning and memory Emotional disorders Circadian rhythm Anxiety Reduced anxiety-like behavior, depressive behavior Passive avoidance test Active avoidance test Morris water maze test Radial maze test Tail suspension test Neuropathology Neurochemistry Neurotransmitter Brain atrophy Blood-brain barrier (BBB) Neurodegenerative disorders Agerelated pathologies Alzheimer’s disease Aβ Oxidative stress Mitochondrial dysfunction Gene expression Proteomics LTP 


  1. 1.
    Takeda T, Hosokawa M, Takeshita S et al (1981) A new murine model accelerated senescence. Mech Ageing Dev 17:183–194. doi:10.1016/0047-6374(81)90084-1 PubMedCrossRefGoogle Scholar
  2. 2.
    Hosokawa M, Kasai R, Higuchi K et al (1994) Grading score system: a method for evaluation of the degree of senescence in senescence accelerated mouse (SAM). Mech Ageing Dev 26:91–102. doi:10.1016/0047-6374(84)90168-4 CrossRefGoogle Scholar
  3. 3.
    Takeda T, Hosokawa M, Higuchi K et al (1991) Senescence-accelerated mouse (SAM): a novel murine model of accelerated senescence. J Am Geriatr Soc 39:911–919PubMedGoogle Scholar
  4. 4.
    Takeda T, Hosokawa M, Higuchi K (1994) Senescence-accelerated mouse (SAM): a novel murine model of aging. In: Takeda T (ed) The SAM model of senescence. Elsevier Science BV, Amsterdam, pp 15–22Google Scholar
  5. 5.
    Takeda T, Matsushita T, Kurozumi M et al (1997) Pathobiology of the senescence-accelerated mouse (SAM). Exp Gerontol 32:117–127. doi:10.1016/S0531-5565(96)00068-X PubMedCrossRefGoogle Scholar
  6. 6.
    Takeda T (1999) Senescence-accelerated mouse (SAM): a biogerontological resource in aging research. Neurobiol Aging 20:105–110. doi:10.1016/S0197-4580(99)00008-1 PubMedCrossRefGoogle Scholar
  7. 7.
    Cotran RS, Kumar V, Robbins SL (1989) Diseases of aging. In: Robbins pathologic basis of disease. W. B. Saunders Company, Philadelphia, pp 543–551Google Scholar
  8. 8.
    Kitado H, Higuchi K, Takeda T (1994) Molecular genetic characterization of the senescence-accelerated mouse (SAM) strains. J Gerontol 49:B247–B254PubMedGoogle Scholar
  9. 9.
    Mori M, Higuchi K (2004) Genetic monitering system for SAM strains utilizing DNA markers. Int Congr Ser 1260:187–190. doi:10.1016/S0531-5131(03)01579-6 CrossRefGoogle Scholar
  10. 10.
    Miyamoto M, Kiyota Y, Yamazaki N et al (1986) Age-related changes in learning and memory in the senescence-accelerated mouse (SAM). Physiol Behav 38:399–406. doi:10.1016/0031-9384(86)90112-5 PubMedCrossRefGoogle Scholar
  11. 11.
    Yagi H, Katoh S, Akiguchi I et al (1988) Age-related deterioration of ability of acquisition in memory and learning in senescence-accelerated mouse; SAM-P/8 as an animal model of disturbances in recent memory. Brain Res 474:86–93. doi:10.1016/0006-8993(88)90671-3 PubMedCrossRefGoogle Scholar
  12. 12.
    Miyamoto M, Kiyota Y, Nishiyama M et al (1992) Senescence-accelerated mouse (SAM): age-related reduced anxiety-like behavior in the SAM-P/8 strain. Physiol Behav 51:979–985. doi:10.1016/0031-9384(92)90081-C PubMedCrossRefGoogle Scholar
  13. 13.
    Flood JF, Morley JE (1993) Age-related changes in foot shock avoidance acquisition and retention in senescence accelerated mouse (SAM). Neurobiol Aging 14:153–157. doi:10.1016/0197-4580(93)90091-O PubMedCrossRefGoogle Scholar
  14. 14.
    Ohta A, Hirano Y, Yagi H et al (1989) Behavioral characteristics of the SAM-P/8 strain in Sidman active avoidance task. Brain Res 498:195–198. doi:10.1016/0006-8993(89)90421-6 PubMedCrossRefGoogle Scholar
  15. 15.
    Miyamoto M (1997) Characteristics of age-related behavioral changes in senescence-accelerated mouse SAMP8 and SAMP10. Exp Gerontol 32:139–148. doi:10.1016/S0531-5565(96)00061-7 PubMedCrossRefGoogle Scholar
  16. 16.
    Miyamoto M (1994) Characteristics of memory and behavioral disorders in SAMP8 mice. In: Takeda T (ed) The SAM model of senescence. Elsevier Science B.V, Amsterdam, pp 61–66Google Scholar
  17. 17.
    Markowska A, Spangler EL, Ingram DK (1998) Behavioral assessment senescence-accelerated mouse (SAMP8 and R1). Physiol Behav 64:15–26. doi:10.1016/S0031-9384(98)00011-0 PubMedCrossRefGoogle Scholar
  18. 18.
    Ikegami S, Shumiya S, Kawamura H (1992) Age-related changes in radial-arm maze learning and basal forebrain cholinergic systems in senescence accelerated mice (SAM). Behav Brain Res 51:15–22. doi:10.1016/S0166-4328(05)80307-9 PubMedCrossRefGoogle Scholar
  19. 19.
    Flood JF, Morley JE (1992) Early onset of age-related impairment of aversive and appetitive learning in the SAM-P/8 mouse. J Gerontol Biol Sci 47:B52–B59Google Scholar
  20. 20.
    Vogel JR, Beer B, Clody DE (1971) A simple and reliable conflict procedure for testing antianxiety agenta. Psychopharmacology (Berl) 21:1–7. doi:10.1007/BF00403989 CrossRefGoogle Scholar
  21. 21.
    Ida Y, Tanaka M, Tsuda A et al (1985) Attenuating effect of diazepam on stress-induced increases in noradrenalin turnover in specific brain regions of rats. Antagonism by Ro 15-1788. Life Sci 37:2491–2498. doi:10.1016/0024-3205(85)90606-X PubMedCrossRefGoogle Scholar
  22. 22.
    Kitamura Y, Zhao XH, Ohnuki T et al (1989) Ligand-binding characteristics of [3H]QNB, [3H]prazocin, [3H]rauwolsine, [3H]TCP and [3H]nitrendipine to cerebral cortical and hippocampal membranes of senescence-accelerated mouse. Neurosci Lett 196:334–338. doi:10.1016/0304-3940(89)90186-9 CrossRefGoogle Scholar
  23. 23.
    Zhao XH, Nomura Y (1990) Age-related changes in uptake and release on L-[3H]noradrenaline in brain slices of senescence-accelerated mouse. Int J Dev Neurosci 8:267–272. doi:10.1016/0736-5748(90)90032-W PubMedCrossRefGoogle Scholar
  24. 24.
    Nishiyama M, Takahashi H, Miyamoto M (1994) Senescence-accelerated mouse (SAMP8): an animal model for age-related circadian rhythm disorder. In: Takeda T (ed) The SAM model of senescence. Elsevier Science BV, Amsterdam, pp 393–396Google Scholar
  25. 25.
    Akiguchi A, Akiyama H, Sugiyama H, et al. (1988) Morphological changes of the strain of senescence accelerated mouse (SAM-P/8). In: Takeda T, Matsuo T, Akiguchi I, Hosokawa M (eds) Proceedings of the first SAM Kyoto symposium. Fuji Printing Business Company, Kyoto, pp 67–76Google Scholar
  26. 26.
    Sugiyama H, Akiyama H, Akiguchi I et al (1987) Loss of dendritic spines in hippocampal CA1 pyramidal cells of senescence accelerated mouse (SAM). A quantitative Golgi study. Clin Neurol 27:841–845Google Scholar
  27. 27.
    Kawamata T, Nakamura S, Akiguchi I (1994) Dystrophic changes in axon accumulating nitric oxide synthase are accelerated with age in dorsal colime nuclei of senescence-accelerated mice (SAMP8). In: Takeda T et al (eds) The SAM model of senescence. Elsevier Sciences BV, Amsterdam, pp 347–350Google Scholar
  28. 28.
    Takemura M, Nakamura S, Akiguchi I et al (1993) β/A4 protein-like granular structures in the brain of senescence-accelerated mouse. Am J Pathol 142:1887–1897PubMedGoogle Scholar
  29. 29.
    Fukunari A, Kato A, Sasaki Y et al (1994) Colocalization of prolyl endopeptidase and amyloid β-peptide in brains of senescence-accelerated mouse. Neurosci Lett 176:201–204. doi:10.1016/0304-3940(94)90082-5 PubMedCrossRefGoogle Scholar
  30. 30.
    Kumar VB, Farr SA, Flood JF et al (2000) Site-directed antisense oligonucleotide decreases the expression of amyloid precursor protein and reverses deficits in learning and memory in aged SAMP8 mice. Peptides 21:1769–1775. doi:10.1016/S0196-9781(00)00339-9 PubMedCrossRefGoogle Scholar
  31. 31.
    Morley JE, Kumar VB, Bernardo AE et al (2000) β-amyloid precursor polypeptide in SAMP8 mice affects learning and memory. Peptides 21:1761–1767. doi:10.1016/S0196-9781(00)00342-9 PubMedCrossRefGoogle Scholar
  32. 32.
    Kitamura Y, Yamanaka Y, Nagashima K (1994) The age-related increase in markers of astrocytes and amyloid precursor protein in the brain of senescence-accelerated mouse (SAM). In: Takeda T et al (eds) The SAM model of senescence. Elsevier Science BV, Amsterdam, pp 359–362Google Scholar
  33. 33.
    Akiyama H, Kameyama M, Akiguchi I et al (1986) Periodic acid-Schiff (PAS)-positive granular structures in the brain of senescence accelerated mouse (SAM). Acta Neuropathol 72:124–129. doi:10.1007/BF00685973 PubMedCrossRefGoogle Scholar
  34. 34.
    Jucker M, Walker LC, Schwarb P et al (1994) Age-related deposition of glia-associated fibrillar material in brains of C57BL/6 mice. Neuroscience 60:875–889. doi:10.1016/0306-4522(94)90269-0 PubMedCrossRefGoogle Scholar
  35. 35.
    Kuo H, Ingram DK, Walker LC et al (1996) Similarities in the age-related hippocampal deposition of periodic acid-Schiff-positive granules in the senescence-accelerated mouse P8 and C57BL/6 mouse strains. Neuroscience 74:733–740. doi:10.1016/0306-4522(96)00169-8 PubMedCrossRefGoogle Scholar
  36. 36.
    Yagi H, Irino M, Matsushita T et al (1989) Spontaneous spongy degeneration of the brain stem in SAM-P/8 mice, a newly developed memory deficient strain. J Neuropathol Exp Neurol 48:577–590. doi:10.1097/00005072-198909000-00008 PubMedCrossRefGoogle Scholar
  37. 37.
    Yagi H, Akiguchi I, Ohta A et al (1998) Spontaneous and artificial lesions of magnocellular reticular formation of brainstem deteriorate avoidance learning in senescence-accelerated mouse SAM. Brain Res 791:90–98. doi:10.1016/S0006-8993(98)00070-5 PubMedCrossRefGoogle Scholar
  38. 38.
    Gabriel M, Gregg B, Clancy A et al (1986) Brain stem reticular formation neural correlates of stimulus significance and behavior during discriminative avoidance conditioning in rabbits. Behav Neurosci 100:171–184. doi:10.1037/0735-7044.100.2.171 PubMedCrossRefGoogle Scholar
  39. 39.
    Kitabayashi T, Tomimoto H, Akiyama H et al (1993) Reactive microglia in the brain of senescence-accelerated mouse (SAM): an histochemical study. Can J Neurol Sci 20:146Google Scholar
  40. 40.
    Amano T, Nakanishi H, Oka M et al (1995) Increased expression of cathepsine E and D in reactive microglial cells associated with spongiform degeneration in the brain stem of senescence-accelerated mouse. Exp Neurol 136:171–182. doi:10.1006/exnr.1995.1094 PubMedCrossRefGoogle Scholar
  41. 41.
    Jeong BH, Jin JK, Choi EK et al (2002) Analysis of the expression of endogenous murine leukemia viruses in the brains of senescence-accelerated mice (SAMP8) and the relationship between expression and brain histopathology. J Neuropathol Exp Neurol 61:1001–1012PubMedGoogle Scholar
  42. 42.
    Meeker HC, Carp RL (1997) Titers of murine leukemia virus are higher in brains of SAMP8 than SAMR1 mice. Neurobiol Aging 18:543–547. doi:10.1016/S0197-4580(97)00041-9 PubMedCrossRefGoogle Scholar
  43. 43.
    Carp RL, Meeker HC, Chung R et al (2002) Murine leukemia virus in organs of senescence-prone and–resistant mouse strains. Mech Ageing Dev 123:575–584. doi:10.1016/S0047-6374(01)00377-3 PubMedCrossRefGoogle Scholar
  44. 44.
    Nagasaki S, Ozono S, Kawamura K et al (1995) Regional differences in the age-related reduction of the cerebellar cortical thickness in senescence-accelerated mice. Med Sci Res 23:425–427Google Scholar
  45. 45.
    Zhu Y, Lee CC, Lam WC et al (2007) Cell death in the Purkinje cells of the cerebellum of senescence accelerated mouse (SAMP8). Biogerontology 8:537–544. doi:10.1007/s10522-007-9097-3 PubMedCrossRefGoogle Scholar
  46. 46.
    Fukutani Y, Cairns NJ, Rossor MN et al (1996) Purkinje cell loss and astrocytosis in the cerebellum in familial and sporadic Alzheimer’s disease. Neurosci Lett 214:33–36. doi:10.1016/0304-3940(96)12875-5 PubMedCrossRefGoogle Scholar
  47. 47.
    Sjobeck M, Englund E (2001) Alzheimer’s disease and the cerebellum: a morphologic study on neuronal and glial changes. Dement Geriatr Cogn Disord 12:211–218. doi:10.1159/000051260 PubMedCrossRefGoogle Scholar
  48. 48.
    Karasawa N, Nagatsu I, Sakai K et al (1997) Immunocytochemical study of catecholaminergic neurons in the senescence-accelerated mouse (SAM-P8) brain. J Neural Transm 104:1267–1275. doi:10.1007/BF01294727 PubMedCrossRefGoogle Scholar
  49. 49.
    Tanaka J, Okuma Y, Tomobe K et al (2005) The age-related degeneration of oligodendrocytes in the hippocampus of the senescence-accelerated mouse (SAM) P8: a quantitative immunohistochemical study. Biol Pharm Bull 28:615–618. doi:10.1248/bpb.28.615 PubMedCrossRefGoogle Scholar
  50. 50.
    Kitamura Y, Zhao XH, Ohnuki T et al (1992) Age-related changes in transmitter glutamate and NMDA receptor/channels in the brain of senescence-accelerated mouse. Neurosci Lett 137:169–172. doi:10.1016/0304-3940(92)90396-O PubMedCrossRefGoogle Scholar
  51. 51.
    Nomura Y, Kitamura Y, Ohnuki T et al (1997) Alterations in acetylcholine, NMDA, benzodiazepine receptors and protein kinase C in the brain of the senescence-accelerated mouse: an animal model useful for studies on cognitive enhancers. Behav Brain Res 83:51–55. doi:10.1016/S0166-4328(97)86045-7 PubMedCrossRefGoogle Scholar
  52. 52.
    Zhao XH, Kitamura Y, Nomura Y (1992) Age-related changes in NMDA-induced [3H]acetylcholine release from brain slices of senescence-accelerated mouse. Int J Dev Neurosci 10:121–129. doi:10.1016/0736-5748(92)90040-7 PubMedCrossRefGoogle Scholar
  53. 53.
    Nomura Y, Okuma Y (1999) Age-related deficits in lifespan and learning ability in SAMP8 mice. Neurobiol Aging 20:111–115. doi:10.1016/S0197-4580(99)00006-8 PubMedCrossRefGoogle Scholar
  54. 54.
    Armbrecht HJ, Boltz MA, Kumar VB et al (1999) Effect of age on calcium-dependent proteins in hippocampus of senescence-accelerated mice. Brain Res 842:287–293. doi:10.1016/S0006-8993(99)01802-8 PubMedCrossRefGoogle Scholar
  55. 55.
    Flood JF, Morley JE (1998) Learning and memory in the SAMP8 mouse. Neurosci Biobehav Rev 22(1):1–20. doi:10.1016/S0149-7634(96)00063-2 PubMedCrossRefGoogle Scholar
  56. 56.
    Strong R, Reddy V, Morley JE (2003) Cholinergic deficits in the septal-hippocampal pathway of the SAM-P/8 senescence accelerated mouse. Brain Res 966:150–156. doi:10.1016/S0006-8993(02)04192-6 PubMedCrossRefGoogle Scholar
  57. 57.
    Ojika K, Kojima S, Ueki Y et al (1992) Purification and structural analysis of hippocampal cholinergic neurostimulating peptide. Brain Res 572:164–171. doi:10.1016/0006-8993(92)90465-L PubMedCrossRefGoogle Scholar
  58. 58.
    Matsukawa N, Tooyama I, Kimura H et al (1999) Increased expression of hippocampal cholinergic neurostimulating peptide-related components and their messenger RNAs in the hippocampus of aged senescence-accelerated mice. Neuroscience 88:79–92. doi:10.1016/S0306-4522(98)00215-2 PubMedCrossRefGoogle Scholar
  59. 59.
    Yamada K, Matsukawa N, Yuasa H et al (2007) Differential expression of HCNP-related antigens in hippocampus in senescence-accelerated mice. Brain Res 1158:169–175. doi:10.1016/j.brainres.2007.05.013 PubMedCrossRefGoogle Scholar
  60. 60.
    Nomura Y, Wang BX, Qi SB et al (1989) Biochemical changes related to aging in the senescence-accelerated mouse. Exp Gerontol 24:49–55. doi:10.1016/0531-5565(89)90034-X PubMedCrossRefGoogle Scholar
  61. 61.
    Liu J, Mori A (1993) Age-associated changes in superoxide dismutase activity, thiobarbituric acid reactivity and reduced glutathione level in the brain and liver in senescence accelerated mice (SAM): a comparison with ddY mice. Mech Ageing Dev 71:23–30. doi:10.1016/0047-6374(93)90032-M PubMedCrossRefGoogle Scholar
  62. 62.
    Edamatsu R, Mori A, Packer L (1995) The spin-trap N-tert-α-phenyl-butylnitrone prolongs the life span of the senescence accelerated mouse. Biochem Biophys Res Commun 211:847–849. doi:10.1006/bbrc.1995.1889 PubMedCrossRefGoogle Scholar
  63. 63.
    Sato E, Oda N, Ozaki N et al (1996) Early and transient increase in oxidative stress in the cerebral cortex of senescence-accelerated mouse. Mech Ageing Dev 86:105–114. doi:10.1016/0047-6374(95)01681-3 PubMedCrossRefGoogle Scholar
  64. 64.
    Sato E, Kurokawa T, Oda N et al (1996) Early appearance of abnormality of microperoxisomal enzymes in the cerebral cortex of senescence-accelerated mouse. Mech Ageing Dev 92:175–184. doi:10.1016/S0047-6374(96)01832-5 PubMedCrossRefGoogle Scholar
  65. 65.
    Kurokawa T, Asada S, Nishitani S et al (2001) Age-related changes in manganese superoxide dismutase activity in the cerebral cortex of senescence-accelerated prone and resistant mouse. Neurosci Lett 298:135–138. doi:10.1016/S0304-3940(00)01755-9 PubMedCrossRefGoogle Scholar
  66. 66.
    Matsugo S, Kitagawa T, Minami S et al (2000) Age-dependent changes in lipid peroxide levels in peripheral organs, but not in brain, in senescence-accelerated mice. Neurosci Lett 278:105–108. doi:10.1016/S0304-3940(99)00907-6 PubMedCrossRefGoogle Scholar
  67. 67.
    Yasui F, Ishibashi M, Matsugo S et al (2003) Brain lipid hydroperoxide level increases in senescence-accelerated mice at an early age. Neurosci Lett 350:66–68. doi:10.1016/S0304-3940(03)00827-9 PubMedCrossRefGoogle Scholar
  68. 68.
    Okatani Y, Wakatsuki A, Reiter RJ et al (2002) Melatonin reduces oxidative damage of neural lipids and proteins in senescence-accelerated mouse. Neurobiol Aging 23:639–644. doi:10.1016/S0197-4580(02)00005-2 PubMedCrossRefGoogle Scholar
  69. 69.
    Álvarez-Garcia Ó, Vega-Naredo I, Sierra V et al (2006) Elevated oxidative stress in the brain of senescence-accelerated mice. Biogerontology 7:43–52. doi:10.1007/s10522-005-6041-2 PubMedCrossRefGoogle Scholar
  70. 70.
    Sureda FX, Gutierrez-Cuesta J, Romeu M et al (2006) Changes in oxidative stress parameters and neurodegeneration markers in the brain of the senescence-accelerated mice SAMP-8. Exp Gerontol 41:360–367. doi:10.1016/j.exger.2006.01.015 PubMedCrossRefGoogle Scholar
  71. 71.
    Canudas AM, Gutierrez-Cuesta J, Rodríguez MI et al (2005) Hyperphosphorylation of microtubule-associated protein tau in senescence-accelerated mouse (SAM). Mech Ageing Dev 126:1300–1304. doi:10.1016/j.mad.2005.07.008 PubMedCrossRefGoogle Scholar
  72. 72.
    Rebrin I, Sohal RS (2004) Comparison of thiol redox state of mitochondria and homogenates of various tissues between two strains of mice with different longevities. Exp Gerontol 39:1513–1519. doi:10.1016/j.exger.2004.08.014 PubMedCrossRefGoogle Scholar
  73. 73.
    Butterfield DA, Howard BJ, Yatin S et al (1997) Free radical oxidation of brain proteins in accelerated senescence and its modulation by N-tert-butyl-α-phenylnitrone. Proc Natl Acad Sci USA 94:674–678. doi:10.1073/pnas.94.2.674 PubMedCrossRefGoogle Scholar
  74. 74.
    Butterfield DA (2002) Amyloid β-peptide (1–42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s brain. A review. Free Radic Res 36:1307–1313. doi:10.1080/1071576021000049890 PubMedCrossRefGoogle Scholar
  75. 75.
    Poon HF, Joshi G, Sultana R et al (2004) Antisense directed at the Aβ region of APP decreases brain oxidative markers in aged senescence accelerated mice. Brain Res 1018:86–89. doi:10.1016/j.brainres.2004.05.048 PubMedCrossRefGoogle Scholar
  76. 76.
    Farr SA, Poon HF, Dogrukol-Ak D et al (2003) The antioxidants α-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice. J Neurochem 84:1173–1183. doi:10.1046/j.1471-4159.2003.01580.x PubMedCrossRefGoogle Scholar
  77. 77.
    Tomobe K, Okuma Y, Nomura Y (2007) Impairment of CREB phosphorylation in the hippocampal CA1 region of the senescence-accelerated mouse (SAM) P8. Brain Res 1141:214–217. doi:10.1016/j.brainres.2006.08.026 PubMedCrossRefGoogle Scholar
  78. 78.
    Akaishi T, Nakazawa K, Sato K et al (2004) Modulation of voltage-gated Ca2+current by 4-hydroxynonenal in dentate granule cells. Biol Pharm Bull 27:174–179. doi:10.1248/bpb.27.174 PubMedCrossRefGoogle Scholar
  79. 79.
    Ho N, Liauw JA, Blaeser F et al (2000) Impaired synaptic plasticity and cAMP response element-binding protein activation in Ca2+/calmodulin-dependent protein kinase type IV/Gr-deficient mice. J Neurosci 20:6459–6472PubMedGoogle Scholar
  80. 80.
    Yamada S, Uchida S, Ohkura T et al (1996) Alterations in calcium antagonist receptors and calcuium content in senescent brain and attenuation by nimodipine and nicardipine. J Pharmacol Exp Ther 277:721–727PubMedGoogle Scholar
  81. 81.
    Nakahara H, Kanno T, Inai Y et al (1998) Mitochondrial dysfunction in the senescence accelerated mouse (SAM). Free Radic Biol Med 24:85–92. doi:10.1016/S0891-5849(97)00164-0 PubMedCrossRefGoogle Scholar
  82. 82.
    Nishikawa T, Takahashi JA, Fujibayashi Y et al (1998) An early stage mechanism of the age-associated mitochondrial dysfunction in the brain of SAMP8 mice; an age-associated neurodegeneration animal model. Neurosci Lett 254:69–72. doi:10.1016/S0304-3940(98)00646-6 PubMedCrossRefGoogle Scholar
  83. 83.
    Fujibayashi Y, Yamamoto S, Waki A et al (1998) Increased mitochondrial DNA deletion in the brain of SAMP8, a mouse model for spontaneous oxidative stress bain. Neurosci Lett 254:109–112. doi:10.1016/S0304-3940(98)00667-3 PubMedCrossRefGoogle Scholar
  84. 84.
    Xu J, Shi C, Li Q et al (2007) Mitochondrial dysfunction in platelets and hippocampi of senescence-accelerated mice. J Bioenerg Biomembr 39:195–202. doi:10.1007/s10863-007-9077-y PubMedCrossRefGoogle Scholar
  85. 85.
    Ueno M, Akiguchi I, Yagi H et al (1993) Age-related changes in barrier function in mouse brain I. Accelerated age-related increase of brain transfer of serum albumin in accelerated senescence prone SAM-P/8 mice with deficits in learning and memory. Arch Gerontol Geriatr 16:233–248. doi:10.1016/0167-4943(93)90035-G PubMedCrossRefGoogle Scholar
  86. 86.
    Ueno M, Dobrogowska DH, Vorbrodt AW et al (1996) Immunocytochemical evaluation of the blood-brain barrier to endogenous albumin in the olfactory bulb and pons of senescence-accelerated mice (SAM). Histochem Cell Biol 105:203–212. doi:10.1007/BF01462293 PubMedCrossRefGoogle Scholar
  87. 87.
    Ueno M, Akiguchi I, Hosokawa M et al (1997) Age-related changes in the brain transfer of blood-borne horseradish peroxidase in the hippocampus of senescence-accelerated mouse. Acta Neuropathol 93:233–240. doi:10.1007/s004010050609 PubMedCrossRefGoogle Scholar
  88. 88.
    Banks WA, Farr SA, Morley JE (2000) Permeability of the blood-brain barrier to albumin and insulin in the young and aged SAMP8 mouse. J Gerontol Biol Sci 55A:B601–B606Google Scholar
  89. 89.
    Pelegrí C, Canudas AM, Valle JD et al (2007) Increased permeability of blood-brain barrier on the hippocampus of a murine model of senescence. Mech Ageing Dev 128:522–528. doi:10.1016/j.mad.2007.07.002 PubMedCrossRefGoogle Scholar
  90. 90.
    Katsuki H, Ishihara K, Shimada A et al (1990) Age-related deterioration of long term potentiation in the CA3 and CA1 regions of hippocampal slices from the senescence-accelerated mouse. Arch Gerontol Geriatr 11:77–83. doi:10.1016/0167-4943(90)90058-E PubMedCrossRefGoogle Scholar
  91. 91.
    Yang S, Qiao H, Wen L et al (2005) d-Serine enhances impaired long-term potentiation in CA1 subfield of hippocampal slices from aged senescence-accelerated mouse prone/8. Neurosci Lett 379:7–12. doi:10.1016/j.neulet.2004.12.033 PubMedCrossRefGoogle Scholar
  92. 92.
    Inada K, Yokoi I, Kabuto H et al (1996) Age-related increase in nitric oxide synthase activity in senescence accelerated mouse brain and the effect of long-term administration of superoxide radical scavenger. Mech Ageing Dev 89:95–102. doi:10.1016/0047-6374(96)01743-5 PubMedCrossRefGoogle Scholar
  93. 93.
    Howard DJ, Yatin S, Hensley K et al (1996) Prevention of hyperoxia–induced alterations in synaptosomal membrane-associated proteins by N-tert butyl-alpha-phenylnitrone and 4-hydroxy-2, 2, 6, 6-tetramethylpiperidine-1-oxyl (Tempol). J Neurochem 67:2045–2050PubMedCrossRefGoogle Scholar
  94. 94.
    Poon HF, Castegna A, Farr SA et al (2004) Quantitative proteomics analysis of spectfic protein expression and oxidative modification in aged senescence-accelerated–prone 8 mice brain. Neuroscience 126:915–926. doi:10.1016/j.neuroscience.2004.04.046 PubMedCrossRefGoogle Scholar
  95. 95.
    Poon HF, Farr SA, Banks WA et al (2005) Proteomic identification of less oxidized proteins in aged senescence-accelerated mice following administration of antisense oligonucleotide directed at Aβ region of amyloid precursor protein. Brain Res Mol Brain Res 138(1):8–16. doi:10.1016/j.molbrainres.2005.02.020 PubMedCrossRefGoogle Scholar
  96. 96.
    Kaisho Y, Miyamoto M, Shiho O et al (1994) Expression of neurotropine genes in the brain of senescence-accelerated mouse (SAM) during postnatal development. Brain Res 647:139–144. doi:10.1016/0006-8993(94)91408-7 PubMedCrossRefGoogle Scholar
  97. 97.
    Kumar VB, Vyas K, Buddhiraju M et al (1999) Changes in membrane fatty acids and delta-9 desaturase in senescence accelerated (SAMP8) mouse hippocampus with aging. Life Sci 65:1657–1662. doi:10.1016/S0024-3205(99)00414-2 PubMedCrossRefGoogle Scholar
  98. 98.
    Wei X, Zhang Y, Zhou J (1999) Alzheimer’s disease-related gene expression in the brain of senescence accelerated mouse. Neurosci Lett 268:139–142. doi:10.1016/S0304-3940(99)00396-1 PubMedCrossRefGoogle Scholar
  99. 99.
    Kumar VB, Franko MW, Farr SA et al (2000) Identification of age-dependent changes in expression of senescence accelerated mouse (SAMP8) hippocampal proteins by expression array analysis. Biochem Biophys Res Commun 272:657–661. doi:10.1006/bbrc.2000.2719 PubMedCrossRefGoogle Scholar
  100. 100.
    Miyazaki H, Okuma Y, Nomura J et al (2003) Age-related alterations in the expression of glial cell line-derived neurotrophic factor in the senescence-accelerated mouse brain. J Pharmacol Sci 92:28–34. doi:10.1254/jphs.92.28 PubMedCrossRefGoogle Scholar
  101. 101.
    Cheng X-R, Zhou W-X, Zhang Y-X et al (2007) Differential gene expression profiles in the hippocampus of senescence-accelerated mouse. Neurobiol Aging 28:497–506. doi:10.1016/j.neurobiolaging.2006.02.004 PubMedCrossRefGoogle Scholar
  102. 102.
    Takahashi R, Goto S (2004) Altered gene expression in the brain of senescence accelerated mouse SAMP8. Int Congr Ser 1260:85–90. doi:10.1016/S0531-5131(03)01606-6 CrossRefGoogle Scholar
  103. 103.
    Butterfield DA, Poon HF (2005) The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer’s disease. Exp Gerontol 40(10):774–783. doi:10.1016/j.exger.2005.05.007 PubMedCrossRefGoogle Scholar
  104. 104.
    Carter TA, Greenhal JA, Yoshida S et al (2005) Mechanisms of aging in senescence-accelerated mice. Genome Biol 6(6):R48. doi:10.1186/gb-2005-6-6-r48 PubMedCrossRefGoogle Scholar
  105. 105.
    Tomobe K, Isobe M, Sawada M et al (2004) Genetic study of learning and memory deficits in SAMP8 mice. Int Congr Ser 1260:353–356. doi:10.1016/S0531-5131(03)01680-7 CrossRefGoogle Scholar
  106. 106.
    Shimada A, Ohta A, Akiguchi I et al (1992) Inbred SAM-P/10 as a mouse model of spontaneous, inherited brain atrophy. J Neuropathol Exp Neurol 51(4):440–450. doi:10.1097/00005072-199207000-00006 PubMedCrossRefGoogle Scholar
  107. 107.
    Shimada A, Ohta A, Akiguchi I et al (1993) Age-related deterioration on conditional avoidance task in the SAM-P/10 mouse, an animal model of spontaneous brain atrophy. Brain Res 608:266–272. doi:10.1016/0006-8993(93)91467-7 PubMedCrossRefGoogle Scholar
  108. 108.
    Okuma Y, Murayama T, Tha KK et al (2000) Learning deficiency and alterations in acetylcholine receptors and protein kinase C in the brain of senescence-accelerated mouse (SAM)-P10. Mech Ageing Dev 114:191–199. doi:10.1016/S0047-6374(00)00103-2 PubMedCrossRefGoogle Scholar
  109. 109.
    Takahashi H, Sakamoto J, Ohta H et al (2004) Age-related decrease in spontaneity observed in senescence-accelerated mice (SAMP10) and the involvement of the dopaminergic system in behavioral disorders. Int Congr Ser 1260:309–314. doi:10.1016/S0531-5131(03)01671-6 CrossRefGoogle Scholar
  110. 110.
    Shimada A, Hosokawa M, Ohta A et al (1994) Localization of atrophy-prone areas in the aging mouse brain: comparison between the brain atrophy model SAM-P/10 and the normal control SAN-R/1. Neuroscience 59:859–869. doi:10.1016/0306-4522(94)90290-9 PubMedCrossRefGoogle Scholar
  111. 111.
    Shimada A, Keino H, Sato M et al (2002) Age-related progressive neuronal DNA damage associated with cerebral degeneration in a mouse model of accelerated senescence. J Gerontol Biol Sci 57A:B415–B421Google Scholar
  112. 112.
    Borras D, Pumarola M, Ferrer I (2000) Neuronal nuclear DNA fragmentation in the aged canine brain: apotosis or nuclear DNA fragility? Acta Neuropathol 99:402–408. doi:10.1007/s004010051142 PubMedCrossRefGoogle Scholar
  113. 113.
    Stadelmann C, Bruck W, Bancher C et al (1998) Alzheimer disease: DNA fragmentation indicates increased neuronal vulnerability, but not apotosis. J Neuropathol Exp Neurol 57:456–464PubMedCrossRefGoogle Scholar
  114. 114.
    Shimada A, Keino H, Satoh M et al (2003) Age-related loss of synapses in the frontal cortex of SAMP10 mouse: a model of cerebral degeneration. Synapse 48:198–204. doi:10.1002/syn.10209 PubMedCrossRefGoogle Scholar
  115. 115.
    Shimada A, Tsuzuki M, Keino H et al (2006) Apical vulnerability to dendritic retraction in prefrontal neurons of aging SAMP10 mouse: a model of cerebral degeneration. Neuropathol Appl Neurobiol 32:1–14. doi:10.1111/j.1365-2990.2006.00632.x PubMedCrossRefGoogle Scholar
  116. 116.
    Shimada A, Keino H, Chiba Y et al (2008) Limbic structures are prone to age-related impairments in proteasome activity and neuronal ubiquitinated inclusions in SAMP10 mouse: a model of cerebral degeneration. Neuropathol Appl Neurobiol 34:33–51PubMedGoogle Scholar
  117. 117.
    Kumagai N, Chiba Y, Hosono M et al (2007) Involvement of pro-inflammatory cytokines and microglia in an age-associated neurodegeneration model, the SAMP10 mouse. Brain Res 1185:75–85. doi:10.1016/j.brainres.2007.09.021 PubMedCrossRefGoogle Scholar
  118. 118.
    Kim SS, Kang MS, Choi YM et al (1997) Sphingomyelinase activity is enhanced in cerebral cortex of senescence-accelerated mouse-P/10 with advancing age. Biochem Biophys Res Commun 237:583–587. doi:10.1006/bbrc.1997.7133 PubMedCrossRefGoogle Scholar
  119. 119.
    Saito T, Takahashi K, Nakagawa N et al (2000) Deficiencies of hippocampal Zn and ZnT3 accelerate brain aging of mice. Biochem Biophys Res Commun 279:505–511. doi:10.1006/bbrc.2000.3946 PubMedCrossRefGoogle Scholar
  120. 120.
    Onodera Y, Watanabe R, Tha KK et al (2000) Depressive behavior and alterations in receptors for dopamine and 5-hydroxytryptamine in the brain of the senescence-accelerated mouse (SAM)-P10. Jpn J Pharmacol 83:312–318. doi:10.1254/jjp.83.312 PubMedCrossRefGoogle Scholar
  121. 121.
    Numata T, Saito T, Maekawa K et al (2002) Bcl-2 linked apotosis due to increase in NO synthase in brain of SAMP10. Biochem Biophys Res Commun 297:517–522. doi:10.1016/S0006-291X(02)02155-1 PubMedCrossRefGoogle Scholar
  122. 122.
    Nakanishi H, Miyazaki M, Takai N et al (1998) Hyperexcitability of amygdale neurons of senescence-accelareted mouse revealed by electrical and optical recordings in an in vitro slice preparation. Brain Res 812:142–149. doi:10.1016/S0006-8993(98)00968-8 PubMedCrossRefGoogle Scholar
  123. 123.
    Powers DC, Morley JE, Flood JF (1992) Age-related changes in LFA-1 expression, cell adhesion, and PHA-induced proliferation by lymphocytes from senescence-accelerated mouse (SAM)-P/8 and SAM-R/1 substrains. Cell Immunol 141:444–456. doi:10.1016/0008-8749(92)90162-I PubMedCrossRefGoogle Scholar
  124. 124.
    Abe Y, Yuasa M, Kajiwara Y et al (1994) Defects of immune cells in the senescence-accelerated mouse: a model for learning and memory deficits in the aged. Cell Immunol 157:59–69. doi:10.1006/cimm.1994.1205 PubMedCrossRefGoogle Scholar
  125. 125.
    Leverson J, Sweatt JD (2005) Epigenetic mechanisms in memory formation. Nat Rev Neurobiol 6:108–118. doi:10.1038/nrn1604 CrossRefGoogle Scholar
  126. 126.
    Fischer A, Sananbenesi F, Wang X et al (2007) Recovery of learning and memory is associated with chromatin remodeling. Nature 447:178–182. doi:10.1038/nature05772 PubMedCrossRefGoogle Scholar
  127. 127.
    Chen Y, Zhu J, Lum PY et al (2008) Variation in DNA elucidate molecular networks that cause disease. Nature 452:429–435. doi:10.1038/nature06757 PubMedCrossRefGoogle Scholar
  128. 128.
    Emilsson V, Thorleifsson G, Zhang B et al (2008) Genetics of gene expression and its effect on disease. Nature 452:423–428. doi:10.1038/nature06758 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.The Council for SAM ResearchKyotoJapan

Personalised recommendations