Neurochemical Research

, Volume 34, Issue 7, pp 1332–1342 | Cite as

Coriaria Lactone Increased the Intracellular Level of Calcium through the Voltage-gated Calcium Channels in Rat Hippocampal Neurons

  • Qin Zhang
  • Xiaohui Lai
  • Daqing Liao
  • Hermann Stefan
  • Dong ZhouEmail author


To investigate the effects of Coriaria Lactone (CL), an epileptogenic substance, on intracellular levels of calcium ([Ca2+]i) and physiological properties of voltage-gated calcium channels (VGCCs). Ratiometric calcium imaging using Fura Red and whole-cell voltage patch-clamp technique were explored on freshly isolated rat hippocampal neurons exposed to CL. Coriaria Lactone increased [Ca2+]i from 118 ± 21 to 440 ± 35 nM; VGCCs and calcium influx through NMDA receptor served as the main routes of entry. Coriaria Lactone could enhance both Low voltage activated (LVA) and High voltage activated calcium currents in a concentration-dependent way, and its effect on LVA current was more potent (about 60%). The increased calcium currents were accompanied by the shift of voltage-dependent steady-state inactivation to more positive potentials. These effects of CL, especially its impact on LVA current, could activate different calcium-dependent signaling pathways, and influence cellular excitable properties as well, which might play an important role in CL’s epileptogenic process.


Coriaria Lactone Calcium Voltage-gated calcium channel Hippocampal neurons Epilepsy 



The authors would like to thank Dr. Zhenwei Liu and Dr. Christian Lohr for their kind help and critical suggestions during this research effort, and Mr. Shenghua Su, Mr. Chaoliang Zhang, Mr. Qian Hu and Mr. Xuelin Zhao, Dr. Zhiping Yao for technical assistance.


  1. 1.
    Okuda T, Yoshida T (1967) The correlation of coriamyrtin and tutin, and their absolute configurations. Chem Pharm Bull (Tokyo) 15:1955–1965Google Scholar
  2. 2.
    Zhou H, Tang YH, Zheng Y (2006) A new rat model of acute seizures induced by tutin. Brain Res 1092:207–213. doi: 10.1016/j.brainres.2006.03.081 PubMedCrossRefGoogle Scholar
  3. 3.
    Wu LF, Liao DY, Li XQ et al (1987) An epileptic model of the generalized convulsion type of kindling induced by Coriaria lactone in rats. Hua Xi Yi Ke Da Xue Xue Bao 18:104–106PubMedGoogle Scholar
  4. 4.
    Guo L, Chai H, Liu X et al (1992) Observations of synaptic efficacy and paired-pulse facilitation in area CA1 of hippocampal slices from Coriaria Lactone-kindled rats. Brain Res 572:269–272. doi: 10.1016/0006-8993(92)90482-O PubMedCrossRefGoogle Scholar
  5. 5.
    Hu M, Wang A, Liu C et al (2000) Effect of coriaria lactone on membrane potential of hippocampal neurons in rats. J Tongji Med Univ 20:103–105PubMedGoogle Scholar
  6. 6.
    Wang Y, Zhou D, Wang B et al (2003) A kindling model of pharmacoresistant temporal lobe epilepsy in Sprague–Dawley rats induced by Coriaria Lactone and its possible mechanism. Epilepsia 44:475–488. doi: 10.1046/j.1528-1157.2003.32502.x PubMedCrossRefGoogle Scholar
  7. 7.
    Wang-Tilz Y, Tilz C, Wang B et al (2006) Influence of Lamotrigine and Topiramate on MDR1 expression in difficult-to-treat temporal lobe epilepsy. Epilepsia 47:233–239. doi: 10.1111/j.1528-1167.2006.00414.x PubMedCrossRefGoogle Scholar
  8. 8.
    Stefan R, Heinz B (2006) Molecular and cellular mechanisms of pharmaco-resistance in epilepsy. Brain 129:18–35Google Scholar
  9. 9.
    Kohling R (2002) Voltage-gated sodium channels in epilepsy. Epilepsia 43:1278–1295. doi: 10.1046/j.1528-1157.2002.40501.x PubMedCrossRefGoogle Scholar
  10. 10.
    Yang Y, Wu LS, Wu MH et al (2005) The effect of Coriaria Lactone on the transient outward potassium currents of rats. J Luzhou Med Coll 28:402–405 (Article in Chinese)Google Scholar
  11. 11.
    Zhang Q, Lai XH, Liao DQ et al (2007) Effects of coriaria lactone on the sodium currents of acutely isolated rat hippocampal neurons. Sichuan Da Xue Xue Bao Yi Xue Ban 38:119–122PubMedGoogle Scholar
  12. 12.
    Kennedy MB (1989) Regulation of neuronal function by calcium. Trends Neurosci 12:417–420. doi: 10.1016/0166-2236(89)90089-1 PubMedCrossRefGoogle Scholar
  13. 13.
    Pal S, Sombati S, Limbrick DD Jr (1999) In vitro status epilepticus causes sustained elevation of intracellular calcium levels in hippocampal neurons. Brain Res 851:20–31. doi: 10.1016/S0006-8993(99)02035-1 PubMedCrossRefGoogle Scholar
  14. 14.
    Sun DA, Sombati S, Blair RE (2002) Calcium-dependent epileptogenesis in an in vitro model of stroke-induced “epilepsy”. Epilepsia 43:1296–1305. doi: 10.1046/j.1528-1157.2002.09702.x PubMedCrossRefGoogle Scholar
  15. 15.
    Kohr G, Mody I (1991) Endogenous intracellular calcium buffering and the activation/inactivation of HVA calcium currents in rat dentate gyrus granule cells. J Gen Physiol 98:941–967. doi: 10.1085/jgp.98.5.941 PubMedCrossRefGoogle Scholar
  16. 16.
    Vreugdenhil M, Wadman WJ (1994) Kindling-induced long-lasting enhancement of calcium current in hippocampal CA1 area of the rat: relation to calcium-dependent inactivation. Neuroscience 59:105–114. doi: 10.1016/0306-4522(94)90102-3 PubMedCrossRefGoogle Scholar
  17. 17.
    Zou XY, Zeng H, Zheng HB et al (2002) Effect of Coriaria Lactone on calcium homeostasis in pyramidal neurons of hippocampus of rats. Hua Xi Yi Ke Da Xue Xue Bao 33:379–380 (Article in Chinese)Google Scholar
  18. 18.
    Liao SJ, Zhou D (2003) Effect of the extracts of Szechwan Lovge Rhizome on [Ca2+]i of the cultured cortex neurons exposed to Coriaria Lactone. W China J Pharm Sci 18:84–87 (Article in Chinese)Google Scholar
  19. 19.
    Kay AR, Wong RK (1986) Isolation of neurons suitable for patch-clamping from adult mammalian central nervous systems. J Neurosci Methods 16:227–238. doi: 10.1016/0165-0270(86)90040-3 PubMedCrossRefGoogle Scholar
  20. 20.
    Lohr C (2003) Monitoring neuronal calcium signalling using a new method for ratiometric confocal calcium imaging. Cell Calcium 34:295–303. doi: 10.1016/S0143-4160(03)00105-2 PubMedCrossRefGoogle Scholar
  21. 21.
    Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450PubMedGoogle Scholar
  22. 22.
    Faas GC, Vreugdenhil M, Wadman WJ (1996) Calcium currents in pyramidal CA1 neurons in vitro after kindling epileptogenesis in the hippocampus of the rat. Neuroscience 75:57–67. doi: 10.1016/0306-4522(96)00254-0 PubMedCrossRefGoogle Scholar
  23. 23.
    Kortekaas P, Wadman WJ (1997) Development of HVA and LVA calcium currents in pyramidal CA1 neurons in the hippocampus of the rat. Brain Res Dev Brain Res 101:139–147. doi: 10.1016/S0165-3806(97)00059-X PubMedCrossRefGoogle Scholar
  24. 24.
    Takahashi A, Camacho P, Lechleiter JD et al (1999) Measurement of intracellular calcium. Physiol Rev 79:1089–1125PubMedGoogle Scholar
  25. 25.
    Wang Q, Long J, Zhang ZQ et al (1999) Determination of glutamate, aspartate, glycine and γ-aminobutyric acid in cerebral cortex and hippocampus of epileptic rats induced by Coriaria Lactone. J Brain Nerv Dis 7:335–338 (Article in Chinese)Google Scholar
  26. 26.
    Wang Q, Ruan XZ, Shi TH (2000) The alterations of NMDA receptor subunit 1 mRNA in cerebral cortex and hippocampus of epileptic rats induced by Coriaria Lactone. J Apoplexy Nerv Dis 17:17–19 (Article in Chinese)Google Scholar
  27. 27.
    Pang ZP, Wang DS, Hao JD et al (2000) The effect of Coriaria Lactone on NMDA receptor mediated currents in rat hippocampal CA1 Neurons. J Tongji Med Univ 20:6–9PubMedGoogle Scholar
  28. 28.
    Jones OT (2002) Ca2+ channels and epilepsy. Eur J Pharmacol 447:211–225. doi: 10.1016/S0014-2999(02)01845-9 PubMedCrossRefGoogle Scholar
  29. 29.
    Takahashi K, Ueno S, Akaike N (1991) Kinetic properties of T-type Ca2+ currents in isolated rat hippocampal CA1 pyramidal neurons. J Neurophysiol 65:148–155PubMedGoogle Scholar
  30. 30.
    Karst H, Joels M, Wadman WJ (1993) Low-threshold calcium current in dendrites of the adult rat hippocampus. Neurosci Lett 164:154–158. doi: 10.1016/0304-3940(93)90880-T PubMedCrossRefGoogle Scholar
  31. 31.
    Niesen CE, Ge S (1999) Chronic epilepsy in developing hippocampal neurons: electrophysiologic and morphologic features. Dev Neurosci 21:328–338. doi: 10.1159/000017382 PubMedCrossRefGoogle Scholar
  32. 32.
    Su H, Sochivko D, Becker A et al (2002) Upregulation of a T-type Ca2+ channel causes a long-lasting modification of neuronal firing mode after status epilepticus. J Neurosci 22:3645–3655PubMedGoogle Scholar
  33. 33.
    Perez-Reyes E (2003) Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 83:117–161PubMedGoogle Scholar
  34. 34.
    Zou XY, Lai XH, Shang HF (2004) Effect of coriaria lactone on the activation of Ca (2+)-activated K+ channel in hippocampal pyramidal neurons of rats. Sichuan Da Xue Xue Bao Yi Xue Ban 35:44–46PubMedGoogle Scholar
  35. 35.
    Jefferys JG (1990) Basic mechanisms of focal epilepsy. Exp Physiol 75:127–162PubMedGoogle Scholar
  36. 36.
    Khosravani H, Zamponi GW (2006) Voltage-gated calcium channels and idiopathic generalized epilepsies. Physiol Rev 86:941–966. doi: 10.1152/physrev.00002.2006 PubMedCrossRefGoogle Scholar
  37. 37.
    Iannetti P, Spalice A, Parisi P (2005) Calcium-channel blocker verapamil administration in prolonged and refractory status epilepticus. Epilepsia 46:967–969. doi: 10.1111/j.1528-1167.2005.59204.x PubMedCrossRefGoogle Scholar
  38. 38.
    Yu DJ, Liu YH, Zhou JP (1996) The influence of Coriaria Lactone on the GABA and glutamate from the cultured hippocampal neuron. J Chin Histochem Cytochem 5:193–197 (Article in Chinese)Google Scholar
  39. 39.
    Schumacher TB, Beck H, Steinhauser C et al (1998) Effects of Phenytoin, Carbamazepine, and Gabapentin on calcium channels in hippocampal granule cells from patients with temporal lobe epilepsy. Epilepsia 39:355–363. doi: 10.1111/j.1528-1157.1998.tb01387.x PubMedCrossRefGoogle Scholar
  40. 40.
    Gomora JC, Daud AN, Weiergraber M et al (2001) Block of cloned human T-type calcium channels by succinimide antiepileptic drugs. Mol Pharmacol 60:1121–1132PubMedGoogle Scholar
  41. 41.
    Zhang Y, Mori M, Burgess DL et al (2002) Mutations in high-voltage-activated calcium channel genes stimulate low-voltage- activated currents in mouse thalamic relay neurons. J Neurosci 22:6362–6371PubMedGoogle Scholar
  42. 42.
    Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555. doi: 10.1146/annurev.cellbio.16.1.521 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Qin Zhang
    • 1
  • Xiaohui Lai
    • 1
  • Daqing Liao
    • 2
  • Hermann Stefan
    • 3
  • Dong Zhou
    • 1
    Email author
  1. 1.Department of NeurologyWest China Hospital, Sichuan UniversityChengdu, SichuanPeople’s Republic of China
  2. 2.Laboratory of Anesthesiology and Critical Care MedicineWest China Hospital, Sichuan UniversityChengdu, SichuanPeople’s Republic of China
  3. 3.Department of NeurologyEpilepsy Center Erlangen, University of Erlangen-NurembergErlangenGermany

Personalised recommendations