Skip to main content
Log in

Genome-Wide Microarray Analysis of the Differential Neuroprotective Effects of Antioxidants in Neuroblastoma Cells Overexpressing the Familial Parkinson’s Disease α-Synuclein A53T Mutation

Neurochemical Research Aims and scope Submit manuscript

Abstract

In Parkinson’s disease substantia nigra neurons degenerate likely due to oxidative damage interacting with genetic risk factors. Here, SH-SY5Y cells expressing wild-type or A53T α-synuclein had increased sensitivity to methyl-4-phenylpyridinium iodide (MPP+), which induces mitochondrial dysfunction, and 6-hydroxydopamine (6-OHDA), which causes oxidative stress. Edaravone protected only against MPP+, and EGCG ((−)-epigallocatechin-3-O-gallate) protected only against 6-OHDA. Thus genomic responses to MPP+ and 6-OHDA in the presence of these antioxidants were analyzed using microarrays. Pathway analysis indicated that MPP+ activated p53 (P < 0.001) while 6-OHDA induced the Nrf2 antioxidative stress response (P < 0.0001). EGCG was more effective at blocking 6-OHDA-mediated genomic responses, while edaravone was more effective against MPP+. We identified 32 genes that responded to both toxins except in the presence of an effective anti-oxidant; eight are transcription factors and potentially constitute a stress-response transcriptional network. These data provide insights into the mechanisms of neurotoxicity and identifies genes that might mediate antioxidant efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Barzilai A, Melamed E (2003) Molecular mechanisms of selective dopaminergic neuronal death in Parkinson’s disease. Trends Mol Med 9:126–132

    Article  CAS  PubMed  Google Scholar 

  2. Bogaerts V, Theuns J, van Broeckhoven C (2008) Genetic findings in Parkinson’s disease and translation into treatment: a leading role for mitochondria? Genes Brain Behav 7:129–151

    Article  CAS  PubMed  Google Scholar 

  3. Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18:106–108

    Article  CAS  PubMed  Google Scholar 

  4. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B et al (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173

    Article  CAS  PubMed  Google Scholar 

  5. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    Article  CAS  PubMed  Google Scholar 

  6. Giasson BI, Uryu K, Trojanowski JQ, Lee VM (1999) Mutant and wild type human alpha-synucleins assemble into elongated filaments with distinct morphologies in vitro. J Biol Chem 274:7619–7622

    Article  CAS  PubMed  Google Scholar 

  7. Conway KA, Lee SJ, Rochet JC, Ding TT, Harper JD, Williamson RE, Lansbury PT Jr (2000) Accelerated oligomerization by Parkinson’s disease linked alpha-synuclein mutants. Ann N Y Acad Sci 920:42–45

    Article  CAS  PubMed  Google Scholar 

  8. Giasson BI, Forman MS, Higuchi M, Golbe LI, Graves CL, Kotzbauer PT, Trojanowski JQ, Lee VM (2003) Initiation and synergistic fibrillization of tau and alpha-synuclein. Science 300:636–640

    Article  CAS  PubMed  Google Scholar 

  9. Volles MJ, Lansbury PT Jr (2002) Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson’s disease-linked mutations and occurs by a pore-like mechanism. Biochemistry 41:4595–4602

    Article  CAS  PubMed  Google Scholar 

  10. Liang J, Clark-Dixon C, Wang S, Flower TR, Williams-Hart T, Zweig R, Robinson LC, Tatchell K, Witt SN (2008) Novel suppressors of alpha-synuclein toxicity identified using yeast. Hum Mol Genet 17:3784–3795

    Article  CAS  PubMed  Google Scholar 

  11. Tabrizi SJ, Orth M, Wilkinson JM, Taanman JW, Warner TT, Cooper JM, Schapira AH (2000) Expression of mutant alpha-synuclein causes increased susceptibility to dopamine toxicity. Hum Mol Genet 9:2683–2689

    Article  CAS  PubMed  Google Scholar 

  12. Hsu LJ, Sagara Y, Arroyo A, Rockenstein E, Sisk A, Mallory M, Wong J, Takenouchi T, Hashimoto M, Masliah E (2000) Alpha-synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol 157:401–410

    CAS  PubMed  Google Scholar 

  13. Hunya A, Foldi I, Szegedi V, Soos K, Zarandi M, Szabo A, Zadori D, Penke B, Datki ZL (2008) Differences between normal and alpha-synuclein overexpressing SH-SY5Y neuroblastoma cells after Abeta(1–42) and NAC treatment. Brain Res Bull 75:648–654

    Article  CAS  PubMed  Google Scholar 

  14. Kanda S, Bishop JF, Eglitis MA, Yang Y, Mouradian MM (2000) Enhanced vulnerability to oxidative stress by alpha-synuclein mutations and C-terminal truncation. Neuroscience 97:279–284

    Article  CAS  PubMed  Google Scholar 

  15. Batelli S, Albani D, Rametta R, Polito L, Prato F, Pesaresi M, Negro A, Forloni G (2008) DJ-1 modulates alpha-synuclein aggregation state in a cellular model of oxidative stress: relevance for Parkinson’s disease and involvement of HSP70. PLoS ONE 3:e1884

    Article  PubMed  CAS  Google Scholar 

  16. Yu WH, Matsuoka Y, Sziraki I, Hashim A, Lafrancois J, Sershen H, Duff KE (2008) Increased dopaminergic neuron sensitivity to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) in transgenic mice expressing mutant A53T alpha-synuclein. Neurochem Res 33:902–911

    Article  CAS  PubMed  Google Scholar 

  17. Nieto M, Gil-Bea FJ, Dalfo E, Cuadrado M, Cabodevilla F, Sanchez B, Catena S, Sesma T, Ribe E, Ferrer I et al (2006) Increased sensitivity to MPTP in human alpha-synuclein A30P transgenic mice. Neurobiol Aging 27:848–856

    Article  CAS  PubMed  Google Scholar 

  18. Rathke-Hartlieb S, Kahle PJ, Neumann M, Ozmen L, Haid S, Okochi M, Haass C, Schulz JB (2001) Sensitivity to MPTP is not increased in Parkinson’s disease-associated mutant alpha-synuclein transgenic mice. J Neurochem 77:1181–1184

    Article  CAS  PubMed  Google Scholar 

  19. Samii A, Nutt JG, Ransom BR (2004) Parkinson’s disease. Lancet 363:1783–1793

    Article  CAS  PubMed  Google Scholar 

  20. Dexter DT, Holley AE, Flitter WD, Slater TF, Wells FR, Daniel SE, Lees AJ, Jenner P, Marsden CD (1994) Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study. Mov Disord 9:92–97

    Article  CAS  PubMed  Google Scholar 

  21. Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, Marsden CD, Jenner P, Halliwell B (1997) Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem 69:1196–1203

    CAS  PubMed  Google Scholar 

  22. Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52:381–389

    Article  CAS  PubMed  Google Scholar 

  23. Giasson BI, Ischiropoulos H, Lee VM, Trojanowski JQ (2002) The relationship between oxidative/nitrative stress and pathological inclusions in Alzheimer’s and Parkinson’s diseases. Free Radic Biol Med 32:1264–1275

    Article  CAS  PubMed  Google Scholar 

  24. Good PF, Hsu A, Werner P, Perl DP, Olanow CW (1998) Protein nitration in Parkinson’s disease. J Neuropathol Exp Neurol 57:338–342

    Article  CAS  PubMed  Google Scholar 

  25. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306

    Article  CAS  PubMed  Google Scholar 

  26. Bloem BR, Irwin I, Buruma OJ, Haan J, Roos RA, Tetrud JW, Langston JW (1990) The MPTP model: versatile contributions to the treatment of idiopathic Parkinson’s disease. J Neurol Sci 97:273–293

    Article  CAS  PubMed  Google Scholar 

  27. Sauer H, Oertel WH (1994) Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine a combined retrograde tracing and immunocytochemical study in the rat. Neuroscience 59:401–415

    Article  CAS  PubMed  Google Scholar 

  28. Shults CW, Oakes D, Kieburtz K, Beal MF, Haas R, Plumb S, Juncos JL, Nutt J, Shoulson I, Carter J et al (2002) Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol 59:1541–1550

    Article  PubMed  Google Scholar 

  29. Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S (2001) Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem 78:1073–1082

    Article  CAS  PubMed  Google Scholar 

  30. Jin CF, Shen SR Sr, Zhao BL (2001) Different effects of five catechins on 6-hydroxydopamine-induced apoptosis in PC12 cells. J Agric Food Chem 49:6033–6038

    Article  CAS  PubMed  Google Scholar 

  31. Wang L, Xu S, Xu X, Chan P (2009) (-)-Epigallocatechin-3-gallate protects SH-SY5Y cells against 6-OHDA-induced cell death through STAT3 activation. J Alzheimers Dis 17:295–304

    CAS  PubMed  Google Scholar 

  32. Yuan WJ, Yasuhara T, Shingo T, Muraoka K, Agari T, Kameda M, Uozumi T, Tajiri N, Morimoto T, Jing M et al (2008) Neuroprotective effects of edaravone-administration on 6-OHDA-treated dopaminergic neurons. BMC Neurosci 9:75

    Article  PubMed  CAS  Google Scholar 

  33. Chen H, Wang S, Ding JH, Hu G (2008) Edaravone protects against MPP+-induced cytotoxicity in rat primary cultured astrocytes via inhibition of mitochondrial apoptotic pathway. J Neurochem 106:2345–2352

    Article  CAS  PubMed  Google Scholar 

  34. Hughes TR, Mao M, Jones AR, Burchard J, Marton MJ, Shannon KW, Lefkowitz SM, Ziman M, Schelter JM, Meyer MR et al (2001) Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol 19:342–347

    Article  CAS  PubMed  Google Scholar 

  35. Weng L, Dai H, Zhan Y, He Y, Stepaniants SB, Bassett DE (2006) Rosetta error model for gene expression analysis. Bioinformatics 22:1111–1121

    Article  CAS  PubMed  Google Scholar 

  36. Carrasco E, Casper D, Werner P (2005) Dopaminergic neurotoxicity by 6-OHDA and MPP+: differential requirement for neuronal cyclooxygenase activity. J Neurosci Res 81:121–131

    Article  CAS  PubMed  Google Scholar 

  37. Park SH, Choi WS, Yoon SY, Ahn YS, Oh YJ (2004) Activation of NF-kappaB is involved in 6-hydroxydopamine-but not MPP+-induced dopaminergic neuronal cell death: its potential role as a survival determinant. Biochem Biophys Res Commun 322:727–733

    Article  CAS  PubMed  Google Scholar 

  38. Cleren C, Naudin B, Costentin J (2003) Apparent opposite effects of tetrabenazine and reserpine on the toxic effects of 1-methyl-4-phenylpyridinium or 6-hydroxydopamine on nigro-striatal dopaminergic neurons. Brain Res 989:187–195

    Article  CAS  PubMed  Google Scholar 

  39. O’Malley KL, Liu J, Lotharius J, Holtz W (2003) Targeted expression of BCL-2 attenuates MPP+ but not 6-OHDA induced cell death in dopaminergic neurons. Neurobiol Dis 14:43–51

    Article  PubMed  CAS  Google Scholar 

  40. Han BS, Noh JS, Gwag BJ, Oh YJ (2003) A distinct death mechanism is induced by 1-methyl-4-phenylpyridinium or by 6-hydroxydopamine in cultured rat cortical neurons: degradation and dephosphorylation of tau. Neurosci Lett 341:99–102

    Article  CAS  PubMed  Google Scholar 

  41. Choi WS, Yoon SY, Oh TH, Choi EJ, O’Malley KL, Oh YJ (1999) Two distinct mechanisms are involved in 6-hydroxydopamine- and MPP+-induced dopaminergic neuronal cell death: role of caspases, ROS, and JNK. J Neurosci Res 57:86–94

    Article  CAS  PubMed  Google Scholar 

  42. Lotharius J, Dugan LL, O’Malley KL (1999) Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons. J Neurosci 19:1284–1293

    CAS  PubMed  Google Scholar 

  43. Wu WS, Heinrichs S, Xu D, Garrison SP, Zambetti GP, Adams JM, Look AT (2005) Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma. Cell 123:641–653

    Article  CAS  PubMed  Google Scholar 

  44. Sanz E, Quintana A, Battaglia V, Toninello A, Hidalgo J, Ambrosio S, Valoti M, Marco JL, Tipton KF, Unzeta M (2008) Anti-apoptotic effect of Mao-B inhibitor PF9601 N [N-(2-propynyl)-2-(5-benzyloxy-indolyl) methylamine] is mediated by p53 pathway inhibition in MPP(+)-treated SH-SY5Y human dopaminergic cells. J Neurochem 105:2404–2407

    Article  CAS  PubMed  Google Scholar 

  45. Duan W, Zhu X, Ladenheim B, Yu QS, Guo Z, Oyler J, Cutler RG, Cadet JL, Greig NH, Mattson MP (2002) p53 inhibitors preserve dopamine neurons and motor function in experimental parkinsonism. Ann Neurol 52:597–606

    Article  CAS  PubMed  Google Scholar 

  46. Cao TT, Ma L, Kandpal G, Warren L, Hess JF, Seabrook GR (2005) Increased nuclear factor-erythroid 2 p45-related factor 2 activity protects SH-SY5Y cells against oxidative damage. J Neurochem 95:406–417

    Article  CAS  PubMed  Google Scholar 

  47. Westergard L, Christensen HM, Harris DA (2007) The cellular prion protein (PrP(C)): its physiological function and role in disease. Biochim Biophys Acta 1772:629–644

    CAS  PubMed  Google Scholar 

  48. Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA (2004) Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol 14:283–291

    Article  CAS  PubMed  Google Scholar 

  49. Shimojo M, Hersh LB (2006) Characterization of the REST/NRSF-interacting LIM domain protein (RILP): localization and interaction with REST/NRSF. J Neurochem 96:1130–1138

    Article  CAS  PubMed  Google Scholar 

  50. Lunyak VV, Rosenfeld MG (2005) No rest for REST: REST/NRSF regulation of neurogenesis. Cell 121:499–501

    Article  CAS  PubMed  Google Scholar 

  51. Andersson E, Jensen JB, Parmar M, Guillemot F, Bjorklund A (2006) Development of the mesencephalic dopaminergic neuron system is compromised in the absence of neurogenin 2. Development 133:507–516

    Article  CAS  PubMed  Google Scholar 

  52. Pandey S, Wang E (1995) Cells en route to apoptosis are characterized by the upregulation of c-fos, c-myc, c-jun, cdc2, and RB phosphorylation, resembling events of early cell-cycle traverse. J Cell Biochem 58:135–150

    Article  CAS  PubMed  Google Scholar 

  53. Hsu HC, Zhou T, Mountz JD (2004) Nur77 family of nuclear hormone receptors. Curr Drug Targets Inflamm Allergy 3:413–423

    Article  CAS  PubMed  Google Scholar 

  54. Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD, Green DR (2005) PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 309:1732–1735

    Article  CAS  PubMed  Google Scholar 

  55. Venugopal R, Jaiswal AK (1996) Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proc Natl Acad Sci USA 93:14960–14965

    Article  CAS  PubMed  Google Scholar 

  56. Venugopal R, Jaiswal AK (1998) Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes. Oncogene 17:3145–3156

    Article  CAS  PubMed  Google Scholar 

  57. Moi P, Chan K, Asunis I, Cao A, Kan YW (1994) Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci USA 91:9926–9930

    Article  CAS  PubMed  Google Scholar 

  58. Nguyen T, Sherratt PJ, Pickett CB (2003) Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 43:233–260

    Article  CAS  PubMed  Google Scholar 

  59. Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, Arias C, Lennon CJ, Kluger Y, Dynlacht BD (2007) XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol Cell 27:53–66

    Article  CAS  PubMed  Google Scholar 

  60. Holtz WA, O’Malley KL (2003) Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons. J Biol Chem 278:19367–19377

    Article  CAS  PubMed  Google Scholar 

  61. Hoozemans JJ, van Haastert ES, Eikelenboom P, de Vos RA, Rozemuller JM, Scheper W (2007) Activation of the unfolded protein response in Parkinson’s disease. Biochem Biophys Res Commun 354:707–711

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Ian Reynolds for advice during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Ma.

Additional information

Lei Ma and Tracy T. Cao have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, L., Cao, T.T., Kandpal, G. et al. Genome-Wide Microarray Analysis of the Differential Neuroprotective Effects of Antioxidants in Neuroblastoma Cells Overexpressing the Familial Parkinson’s Disease α-Synuclein A53T Mutation. Neurochem Res 35, 130–142 (2010). https://doi.org/10.1007/s11064-009-0038-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-0038-1

Keywords

Navigation