Skip to main content

Anti-convulsant Effect and Mechanism of Astragalus mongholicus Extract In Vitro and In Vivo: Protection Against Oxidative Damage and Mitochondrial Dysfunction

Abstract

Astragalus mongholicus (AM) is a traditional medicinal herb used as a neuroprotective agent for its anxiolytic, antidepressant, antiamnestic, and antiaggresive effects. However, the mechanisms underlying its anti-convulsant properties are not well studied. In the present study, we examined the anticonvulsant effects on pentylenetetrazol (PTZ)-induced seizures in mice and the possible mechanisms of protection against oxidative damage and mitochondrial dysfunction in vitro. The behavioral studies showed that the root extract of AM had powerful anticonvulsant effects against seizures induced by PTZ and the biochemical studies showed that root extract of AM inhibited PTZ-induced increase in lipid peroxidation, protein oxidation and reactive oxygen species, and enhanced mitochondrial function. Electron spin resonance spectroscopy studies demonstrated that the extracts from the root and aerial parts of AM possess potent effects on scavenging hydroxyl and lipid free radicals. We found that AM extract significantly protected malondialdehyde-induced oxidative damage by ameliorating activities of the mitochondrial complexes I, II, malate dehydrogenase and mitochondrial membrane potential. These data suggest that the anti-convulsant effects of AM extract may be mediated by its protective actions against oxidative damage and amelioration of mitochondrial dysfunction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Molodavkin GM, Voronina TA, Aldarmaa J (2000) Psychotropic effect of the Astragalus mongolicus preparation. Eksp Klin Farmakol 63:12–14

    CAS  PubMed  Google Scholar 

  2. Tohda C, Tamura T, Matsuyama S et al (2006) Promotion of axonal maturation and prevention of memory loss in mice by extracts of Astragalus mongholicus. Br J Pharmacol 149:532–541

    Article  CAS  PubMed  Google Scholar 

  3. Castegna A, Thongboonkerd V, Klein JB et al (2003) Proteomic identification of nitrated proteins in Alzheimer’s disease brain. J Neurochem 85:1394–1401

    Article  CAS  PubMed  Google Scholar 

  4. Arking R, Buck S, Novoseltev VN et al (2002) Genomic plasticity, energy allocations, and the extended longevity phenotypes of Drosophila. Ageing Res Rev 1:209–228

    Article  CAS  PubMed  Google Scholar 

  5. Yoshida Y, Wang MQ, Liu JN et al (1997) Immunomodulating activity of Chinese medicinal herbs and Oldenlandia diffusa in particular. Int J Immunopharmacol 19:359–370

    Article  CAS  PubMed  Google Scholar 

  6. Yang YZ, Jin PY, Guo Q et al (1990) Effect of Astragulas membranaceus on natural killer cell activity and induction of alpha- and gamma-interferon in patients with Coxsackie B viral myocarditis. Chin Med J (Engl) 103:304–307

    CAS  Google Scholar 

  7. Mira L, Fernandez MT, Santos M et al (2002) Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radic Res 36:1199–1208

    Article  CAS  PubMed  Google Scholar 

  8. Tian Z, Xiao PG, Wen J et al (2006) Review of bioactivities of natural cycloartane triterpenoids. Zhongguo Zhong Yao Za Zhi 31:625–629

    CAS  PubMed  Google Scholar 

  9. Patel M (2004) Mitochondrial dysfunction and oxidative stress: cause and consequence of epileptic seizures. Free Radic Biol Med 37:1951–1962

    Article  CAS  PubMed  Google Scholar 

  10. Pan JW, Williamson A, Cavus I et al (2008) Neurometabolism in human epilepsy. Epilepsia 49(Suppl 3):31–41

    Article  CAS  PubMed  Google Scholar 

  11. Kudin AP, Kudina TA, Seyfried J et al (2002) Seizure-dependent modulation of mitochondrial oxidative phosphorylation in rat hippocampus. Eur J NeuroSci 15:1105–1114

    Article  PubMed  Google Scholar 

  12. Kunz WS, Kudin AP, Vielhaber S et al (2000) Mitochondrial complex I deficiency in the epileptic focus of patients with temporal lobe epilepsy. Ann Neurol 48:766–773

    Article  CAS  PubMed  Google Scholar 

  13. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    CAS  PubMed  Google Scholar 

  14. Patsoukis N, Georgiou CD (2004) Determination of the thiol redox state of organisms: new oxidative stress indicators. Anal Bioanal Chem 378:1783–1792

    Article  CAS  PubMed  Google Scholar 

  15. Bashkatova V, Narkevich V, Vitskova G et al (2003) The influence of anticonvulsant and antioxidant drugs on nitric oxide level and lipid peroxidation in the rat brain during penthylenetetrazole-induced epileptiform model seizures. Prog Neuropsychopharmacol Biol Psychiatry 27:487–492

    Article  CAS  PubMed  Google Scholar 

  16. Liu J, Yokoi I, Doniger S et al (1998) Adrenalectomy causes oxidative damage and monoamine increase in the brain of rats and enhances immobilization stress-induced oxidative damage and neurotransmitter changes. Int J Stress Manag 5:39–56

    Article  Google Scholar 

  17. Fukuyama R, Nakayama A, Nakase T et al (2002) A newly established neuronal rho-0 cell line highly susceptible to oxidative stress accumulates iron and other metals. Relevance to the origin of metal ion deposits in brains with neurodegenerative disorders. J Biol Chem 277:41455–41462

    Article  CAS  PubMed  Google Scholar 

  18. Noda Y, Anzai K, Mori A et al (1997) Hydroxyl and superoxide anion radical scavenging activities of natural source antioxidants using the computerized JES-FR30 ESR spectrometer system. Biochem Mol Biol Int 42:35–44

    CAS  PubMed  Google Scholar 

  19. Gomez-Vargas M, Nishibayashi-Asanuma S, Asanuma M et al (1998) Pergolide scavenges both hydroxyl and nitric oxide free radicals in vitro and inhibits lipid peroxidation in different regions of the rat brain. Brain Res 790:202–208

    Article  CAS  PubMed  Google Scholar 

  20. Krahenbuhl S, Chang M, Brass EP et al (1991) Decreased activities of ubiquinol:ferricytochrome c oxidoreductase (complex III) and ferrocytochrome c:oxygen oxidoreductase (complex IV) in liver mitochondria from rats with hydroxycobalamin[c-lactam]-induced methylmalonic aciduria. J Biol Chem 266:20998–21003

    CAS  PubMed  Google Scholar 

  21. Humphries KM, Szweda LI (1998) Selective inactivation of alpha-ketoglutarate dehydrogenase and pyruvate dehydrogenase: reaction of lipoic acid with 4-hydroxy-2-nonenal. Biochemistry 37:15835–15841

    Article  CAS  PubMed  Google Scholar 

  22. Trounce IA, Kim YL, Jun AS et al (1996) Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol 264:484–509

    Article  CAS  PubMed  Google Scholar 

  23. Picklo MJ, Amarnath V, McIntyre JO et al (1999) 4-Hydroxy-2(E)-nonenal inhibits CNS mitochondrial respiration at multiple sites. J Neurochem 72:1617–1624

    Article  CAS  PubMed  Google Scholar 

  24. Reers M, Smiley ST, Mottola-Hartshorn C et al (1995) Mitochondrial membrane potential monitored by JC-1 dye. Methods Enzymol 260:406–417

    Article  CAS  PubMed  Google Scholar 

  25. Liu J, Kabuto H, Hiramatsu M et al (1991) Effects of Guilingji on brain monoamines and their metabolites in mice. Acta Med Okayama 45:217–222

    CAS  PubMed  Google Scholar 

  26. Luszczki JJ, Wojcik-Cwikla J, Andres MM et al (2005) Pharmacological and behavioral characteristics of interactions between vigabatrin and conventional antiepileptic drugs in pentylenetetrazole-induced seizures in mice: an isobolographic analysis. Neuropsychopharmacology 30:958–973

    Article  CAS  PubMed  Google Scholar 

  27. Kokate TG, Svensson BE, Rogawski MA (1994) Anticonvulsant activity of neurosteroids: correlation with gamma-aminobutyric acid-evoked chloride current potentiation. J Pharmacol Exp Ther 270:1223–1229

    CAS  PubMed  Google Scholar 

  28. McCord JM (1995) Superoxide radical: controversies, contradictions, and paradoxes. Proc Soc Exp Biol Med 209:112–117

    CAS  PubMed  Google Scholar 

  29. Maertens P, Dyken P, Graf W et al (1995) Free radicals, anticonvulsants, and the neuronal ceroid-lipofuscinoses. Am J Med Genet 57:225–228

    Article  CAS  PubMed  Google Scholar 

  30. Liu J, Mori A (1999) Stress, aging, and brain oxidative damage. Neurochem Res 24:1479–1497

    Article  CAS  PubMed  Google Scholar 

  31. Kodsi MH, Swerdlow NR (1997) Mitochondrial toxin 3-nitropropionic acid produces startle reflex abnormalities and striatal damage in rats that model some features of Huntington’s disease. Neurosci Lett 231:103–107

    Article  CAS  PubMed  Google Scholar 

  32. Chinopoulos C, Adam-Vizi V (2001) Mitochondria deficient in complex I activity are depolarized by hydrogen peroxide in nerve terminals: relevance to Parkinson’s disease. J Neurochem 76:302–306

    Article  CAS  PubMed  Google Scholar 

  33. Smeitink J, van den Heuvel L, DiMauro S (2001) The genetics and pathology of oxidative phosphorylation. Nat Rev Genet 2:342–352

    Article  CAS  PubMed  Google Scholar 

  34. Nicholls DG, Budd SL (2000) Mitochondria and neuronal survival. Physiol Rev 80:315–360

    CAS  PubMed  Google Scholar 

  35. Frantseva MV, Perez Velazquez JL, Tsoraklidis G et al (2000) Oxidative stress is involved in seizure-induced neurodegeneration in the kindling model of epilepsy. Neuroscience 97:431–435

    Article  CAS  PubMed  Google Scholar 

  36. Sharma M, Gupta YK (2003) Effect of alpha lipoic acid on intracerebroventricular streptozotocin model of cognitive impairment in rats. Eur Neuropsychopharmacol 13:241–247

    Article  CAS  PubMed  Google Scholar 

  37. Butterfield DA (2002) Amyloid beta-peptide (1–42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Radic Res 36:1307–1313

    Article  CAS  PubMed  Google Scholar 

  38. Barichello T, Bonatto F, Agostinho FR et al (2004) Structure-related oxidative damage in rat brain after acute and chronic electroshock. Neurochem Res 29:1749–1753

    Article  CAS  PubMed  Google Scholar 

  39. Schneider Oliveira M, Flavia Furian A, Freire Royes LF et al (2004) Ascorbate modulates pentylenetetrazol-induced convulsions biphasically. Neuroscience 128:721–728

    Article  CAS  PubMed  Google Scholar 

  40. Lafon-Cazal M, Pietri S, Culcasi M et al (1993) NMDA-dependent superoxide production and neurotoxicity. Nature 364:535–537

    Article  CAS  PubMed  Google Scholar 

  41. Riazi K, Honar H, Homayoun H et al (2004) Sex and estrus cycle differences in the modulatory effects of morphine on seizure susceptibility in mice. Epilepsia 45:1035–1042

    Article  CAS  PubMed  Google Scholar 

  42. Baylin SB, Herman JG, Graff JR et al (1998) Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 72:141–196

    Article  CAS  PubMed  Google Scholar 

  43. Jodar L, Takahashi M, Kaneto H (1995) Effects of footshock-, psychological- and forced swimming-stress on the learning and memory processes: involvement of opioidergic pathways. Jpn J Pharmacol 67:143–147

    Article  CAS  PubMed  Google Scholar 

  44. Molodavkin GM, Aldarmaa Z, Voronina TA et al (1998) Behavioral and electrophysiologic analysis of the anxiolytic effect of astragalus mongolian. Biull Eksp Biol Med 125:407–409

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Edward Sharman for critical reading of this manuscript. This study was supported by Pujiang Talent Award (05PG14104; J. L.) from the Shanghai Science and Technology Committee, Shanghai, China and a scholarship of the Third World Academy of Sciences (J. A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiankang Liu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aldarmaa, J., Liu, Z., Long, J. et al. Anti-convulsant Effect and Mechanism of Astragalus mongholicus Extract In Vitro and In Vivo: Protection Against Oxidative Damage and Mitochondrial Dysfunction. Neurochem Res 35, 33 (2010). https://doi.org/10.1007/s11064-009-0027-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11064-009-0027-4

Keywords

  • Hydroxyl radical
  • Lipid radical
  • Mitochondrial enzyme complexes
  • Malate dehydrogenase
  • Mitochondrial membrane potential
  • Oxidative stress