Skip to main content
Log in

Role of Selenium on Calcium Signaling and Oxidative Stress-induced Molecular Pathways in Epilepsy

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Epilepsy is one of the oldest neurological conditions known to humankind. It is known that oxidative stress and generation of reactive oxygen species are a cause and consequence of epileptic seizures. Although recent years have seen tremendous progress in the molecular biology and metabolism of selenium, we still know little about the cell type-specific and temporal pattern of selenium and its derivatives in the brain of epileptic humans and experimental animals. It has been suggested that some antiepileptic drug therapies such as valproic acid, deplete the total body selenium level and selenium-dependent glutathione peroxidase (GSH-Px) activity although therapy with a new epileptic drug, topiramate, activated GSH-Px activity in epileptic animals and humans. An observation of lower blood or tissue selenium level and GSH-Px activity in epileptic patients and animals compared to controls in recent publications may support the proposed crucial role of selenium level and GSH-Px activity in the pathogenesis of epilepsy. Selenium is incorporated into an interesting class of molecules known as selenoproteins that contain the modified amino acid, selenocysteine. There are signs of selenium and selenoprotein deficiency in the pathogenesis of epilepsy. In conclusion, there is convincing evidence for the proposed crucial role of selenium and deficiency of GSH-Px enzyme activity in epilepsy pathogenesis. Blood GSH-Px activities could be a reliable indicator of selenium deficiency in patients with epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

cGSH-Px:

Cytoplasmic GSH-Px

CuZnSOD:

Copper and zinc SOD

EEG:

Electroencephalography

eNOS:

Endothelial nitric oxide synthase

GSH:

Glutathione

GSH-Px:

Glutathione peroxidase

NMDA:

N-Methyl-d-aspartate

nNOS:

Neuronal nitric oxide synthase

NO:

Nitric oxide

NOS:

Nitric oxide synthase

PHGSH-Px:

Phospholipid hydroperoxide

PUFAs:

Polyunsaturated fatty acids

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TBARS:

Thiobarbituric acid reactive substances

MDA:

Malondialdehyde

References

  1. Acharya MM, Hattiangady B, Shetty AK (2008) Progress in neuroprotection strategies for preventing epilepsy. Prog Neurobiol 84:363–404

    Article  CAS  PubMed  Google Scholar 

  2. Hamed SA, Abdellah MM, El-Melegy N (2004) Blood levels of trace elements, electrolytes, and oxidative stress/antioxidant systems in epileptic patients. J Pharmacol 96:465–473

    Article  CAS  Google Scholar 

  3. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  CAS  PubMed  Google Scholar 

  4. Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241

    Article  CAS  PubMed  Google Scholar 

  5. Low SC, Berry MJ (1996) Knowing when not to stop: selenocysteine incorporation in eukaryotes. Trends Biochem Sci 21:203–208

    CAS  PubMed  Google Scholar 

  6. Chen J, Berry MJ (2003) Selenium and selenoproteins in the brain and brain diseases. J Neurochem 86:1–12

    Article  CAS  PubMed  Google Scholar 

  7. Cheeseman KH, Slater TF (1993) An introduction to free radical biochemistry. Br Med Bull 49:481–493

    CAS  PubMed  Google Scholar 

  8. Halliwell B, Gutteridge JMC (1999) Free radicals, other reactive species and disease. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine, 3rd edn. Oxford University Press, New York, pp 639–645

    Google Scholar 

  9. Ekmekcioglu C (2006) Melatonin receptors in humans: biological role and clinical relevance. Biomed Pharmacother 60:97–108

    Article  CAS  PubMed  Google Scholar 

  10. Nathan C, Xie OW (1994) Regulation of biosynthesis of nitric oxide. J Biol Chem 269:13725–13728

    CAS  PubMed  Google Scholar 

  11. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  CAS  PubMed  Google Scholar 

  12. Burk RF (1991) Molecular biology of selenium with implications for its metabolism. FASEB J 5:2274–2299

    CAS  PubMed  Google Scholar 

  13. Xu S, Touyz RM (2006) Reactive oxygen species and vascular remodeling in hypertension: still alive. Can J Cardiol 22:947–951

    CAS  PubMed  Google Scholar 

  14. Linder N, Rapola J, Raivio KO (1999) Cellular expression of xanthine oxidoreductase protein in normal human tissues. Lab Invest 79:967–974

    CAS  PubMed  Google Scholar 

  15. Akyol O, Herken H, Uz E, Fadillioglu E, Unal S, Sogut S, Ozyurt H, Savas HA (2002) The indices of endogenous oxidative and antioxidative processes in plasma from schizophrenic patients. The possible role of oxidant/antioxidant imbalance. Prog Neuropsychopharmacol Biol Psychiatry 26:995–1005

    Article  CAS  PubMed  Google Scholar 

  16. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624

    Article  CAS  PubMed  Google Scholar 

  17. Kovacic P, Somanathan R (2008) Unifying mechanism for eye toxicity: electron transfer, reactive oxygen species, antioxidant benefits, cell signaling and cell membranes. Cell Membr Free Radic Res 2:56–69

    Google Scholar 

  18. Schweizer U, Bräuer AU, Köhrle J, Nitsch R, Savaskan NE (2004) Selenium and brain function: a poorly recognized liaison. Brain Res Brain Res Rev 45:164–178

    Article  CAS  PubMed  Google Scholar 

  19. Whanger PD (2002) Selenocompunds in plants and animals and their biological significance. J Am Coll Nutr 21:223–232

    CAS  PubMed  Google Scholar 

  20. Ip C (1998) Lessons learned from basic research in selenium and cancer preventation. J Nutr 128:366–380

    Google Scholar 

  21. Gonzalez-Zulueta M, Ensz LM, Mukhina G, Lebovitz RM, Zwacka RM, Engelhardt JF, Oberley LW, Dawson VL, Dawson TM (1998) Manganese superoxide dismutase protects nNOS neurons from NMDA and nitric oxide-mediated neurotoxicity. J Neurosci 18:2040–2055

    CAS  PubMed  Google Scholar 

  22. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:225–344

    Article  CAS  Google Scholar 

  23. Özmen I, Nazıroğlu M, Alicı HA, Sahin F, Cengiz M, Eren İ (2007) Spinal morphine administration reduces the fatty acid contents in spinal cord and brain in rabbits due to oxidative stress. Neurochem Res 32:19–25

    Article  PubMed  CAS  Google Scholar 

  24. Sudha K, Rao AV, Rao A (2001) Oxidative stress and antioxidant in epilepsy. Clin Chim Acta 303:19–24

    Article  CAS  PubMed  Google Scholar 

  25. Zhang L, Maiorino M, Roveri A, Ursin F (1989) Phospholipid hydroperoxide glutathione peroxidase: specific activity in tissues of rats different age and comparison with other glutathione peroxidase. Biochem Biophys Acta 1006:140–143

    CAS  PubMed  Google Scholar 

  26. Yant LJ, Ran Q, Rao L, Van Remmen H, Shibatani T, Belter JG, Motta L, Richardson A, Prolla TA (2003) The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic Biol Med 34:496–502

    Article  CAS  PubMed  Google Scholar 

  27. Schweizer U, Schomburg L, Savaskan NE (2004) The neurobiology of selenium: lessons from transgenic mice. J Nutr 134:707–710

    CAS  PubMed  Google Scholar 

  28. Höck A, Demmel U, Schicha H, Kasperek K, Feinendegen LE (1975) Trace element concentration in human brain. Activation analysis of cobalt, iron, rubidium, selenium, zinc, chromium, silver, cesium, antimony and scandium. Brain 98:49–64

    Article  PubMed  Google Scholar 

  29. Ejima A, Watanabe C, Koyama H, Matsuno K, Satoh H (1996) Determination of selenium in the human brain by graphite furnace atomic absorption spectrometry. Biol Trace Elem Res 54:9–21

    Article  CAS  PubMed  Google Scholar 

  30. Richadson DR (2005) More roles for selenoprotein P: local storage and recycling protein in brain. Biochem J 385:e5–e7

    Google Scholar 

  31. Yang JG, Morrison-Plummer J, Burk RF (1987) Purification and quantification of a rat plasma selenoprotein distinc from glutathione peroxidase using monoclonal antibodies. J Biol Chem 262:13372–13375

    CAS  PubMed  Google Scholar 

  32. Ma S, Hill KE, Caprioli RM, Burk RF (2002) Mass spectrometric characterization of full-length rat selenoprotein P and three isoforms shortened at the C terminus. Evidence that three UGA codons in the mRNA open reading frame have alternative functions of specifying selenocysteine insertion or translation termination. J Biol Chem 277:12749–12754

    Article  CAS  PubMed  Google Scholar 

  33. Tujebajeva RM, Ransom DG, Harney JW, Berry MJ (2000) Expression and characterization of nonmammalian selenoprotein P in the zebrafish. Danio rerio Genes Cells 5:897–903

    Article  CAS  Google Scholar 

  34. Valentine WM, Hill KE, Austin LM, Valentine HL, Goldowitz D, Burk RF (2005) Brainstem axonal degeneration in mice with deletion of selenoprotein P. Toxicol Pathol 33:570–576

    Article  CAS  PubMed  Google Scholar 

  35. Ferriero DM (2005) Protecting neurons. Epilepsia 46(Suppl 7):45–51

    Article  CAS  PubMed  Google Scholar 

  36. Patel M (2004) Mitochondrial dysfunction and oxidative stress: cause and consequence of epileptic seizures. Free Radic Biol Med 37:1951–1962

    Article  CAS  PubMed  Google Scholar 

  37. Schuchmann S, Buchheim K, Meierkord H, Heinemann U (1999) A relative energy failure is associated with low-Mg2+ but not with 4-aminopyridine induced seizure-like events in entorhinal cortex. J Neurophysiol 81:399–403

    CAS  PubMed  Google Scholar 

  38. Gupta RC, Milatovic D, Dettbarn WD (2001) Depletion of energy metabolites following acetylcholinesterase inhibitor-induced status epilepticus: protection by antioxidant. Neurotoxicology 22:271–282

    Article  CAS  PubMed  Google Scholar 

  39. Ashrafi MR, Shabanian R, Abbaskhanian A, Nasirian A, Ghofrani M, Mohammadi M, Zamani GR, Kayhanidoost Z, Ebrahimi S, Pourpak Z (2007) Selenium and intractable epilepsy: is there any correlation? Pediatr Neurol 36:25–29

    Article  PubMed  Google Scholar 

  40. Ashrafi MR, Shams S, Nouri M, Mohseni M, Shabanian R, Yekaninejad MS, Chegini N, Khodadad A, Safaralizadeh R (2007) A probable causative factor for an old problem: selenium and glutathione peroxidase appear to play important roles in epilepsy pathogenesis. Epilepsia 48:1750–1755

    Article  CAS  PubMed  Google Scholar 

  41. Lores Arnaiz S, Travacio M, Llesuy S, Rodríguez de Lores Arnaiz G (1998) Regional vulnerability to oxidative stress in a model of experimental epilepsy. Neurochem Res 23:1477–1483

    Article  CAS  PubMed  Google Scholar 

  42. Chavko M, Auker CR, McCarron RM (2003) Relationship between protein nitration andoxidation and development of hyperoxic seizures. Nitric Oxide 9:18–23

    Article  CAS  PubMed  Google Scholar 

  43. Milatovic D, Gupta RC, Dettbarn WD (2002) Involvement of nitric oxide in kainic acid-induced excitotoxicity in rat brain. Brain Res 957:330–337

    Article  CAS  PubMed  Google Scholar 

  44. Walz R, Morreira JCF, Benfato MS, Quevedo J, Schorer N, Vianna MMR et al (2000) Lipid peroxidation in hippocampus early and late after status epilepticus induced by pilocarpine of kainic acid in Wistar rats. Neurosci Lett 291:179–182

    Article  PubMed  Google Scholar 

  45. Ayyildiz M, Coskun S, Yildirim M, Agar E (2007) The effects of ascorbic acid on penicillin-induced epileptiform activity in rats. Epilepsia 48:1388–1395

    Article  CAS  PubMed  Google Scholar 

  46. Bruce AJ, Baudry M (1995) Oxygen free radicals in rat limbic structures after kainate-induced seizures. Free Radic Biol Med 18:993–1002

    Article  CAS  PubMed  Google Scholar 

  47. Santos LF, Freitas RL, Xavier SM, Saldanha GB, Freitas RM (2008) Neuroprotective actions of vitamin C related to decreased lipid peroxidation and increased catalase activity in adult rats after pilocarpine-induced seizures. Pharmacol Biochem Behav 89:1–5

    Article  CAS  PubMed  Google Scholar 

  48. Eraković V, Zupan G, Varljen J, Simonić A (2003) Pentylenetetrazol-induced seizures and kindling: changes in free fatty acids, superoxide dismutase, and glutathione peroxidase activity. Neurochem Int 42:173–178

    Article  PubMed  Google Scholar 

  49. Akbas SH, Yegin A, Ozben T (2005) Effect of pentylenetetrazol-induced epileptic seizure on the antioxidant enzyme activities, glutathione and lipid peroxidation levels in rat erythrocytes and liver tissues. Clin Biochem 38:1009–1014

    Article  CAS  PubMed  Google Scholar 

  50. Armağan M, Kutluhan S, Yılmaz M, Yılmaz N, Bülbül M, Vural H, Soyupek S, Nazıroğlu M (2008) Topiramate and vitamin E modulates antioxidant enzymes, nitric oxide and lipid peroxidation in pentylentetrazol-induced nephrotoxicity in rats. Basic Clin Pharm Toxicol 103:166–170

    Article  CAS  Google Scholar 

  51. Frantseva MV, Perez Velazquez JL, Tsoraklidis G, Mendonca AJ, Adamchik Y, Mills LR, Carlen PL, Burnham MW (2000) Oxidative stress is involved in seizure-induced neurodegeneration in the kindling model of epilepsy. Neuroscience 97:431–435

    Article  CAS  PubMed  Google Scholar 

  52. Deniz Onay B, Tasdemir E, Tümer C, Bilgin HM, Atmaca M (2008) Dose dependent effects of ghrelin on pentylenetetrazole-induced oxidative stress in a rat seizure model. Peptides 29:448–455

    Article  CAS  Google Scholar 

  53. Nazıroğlu M, Kutluhan S, Yılmaz M (2008) Selenium and Topiramate modulates oxidative stress and Ca+2-ATPase, EEG records in pentylentetrazol-induced brain seizures in rats. J Membr Biol 225:39–49

    Article  PubMed  CAS  Google Scholar 

  54. Kutluhan S, Nazıroğlu M, Çelik Ö, Yılmaz M (2009) Protective effects of selenium and topiramate on lipid peroxidation and antioxidant vitamin levels in blood of pentylentetrazol-induced epileptic rats. Biol Trace Elem Res 129(1–3):181–189

    Article  CAS  PubMed  Google Scholar 

  55. Patsoukis N, Zervoudakis G, Panagopoulos NT, Georgiou CD, Angelatou F, Matsokis NA (2004) Thiol redox state (TRS) and oxidative stress in the mouse hippocampus after pentylenetetrazol-induced epileptic seizure. Neurosci Lett 357:83–86

    Article  CAS  PubMed  Google Scholar 

  56. Bashkatova V, Narkevich V, Vitskova G, Vanin A (2003) The influence of anticonvulsant and antioxidant drugs on nitric oxide level and lipid peroxidation in the rat brain during penthylenetetrazole-induced epileptiform model seizures. Prog Neuropsychopharmacol Biol Psychiatry 27:487–492

    Article  CAS  PubMed  Google Scholar 

  57. Verrotti A, Basciani F, Trotta D, Pomilio MP, Morgese G, Chiarelli F (2002) Serum copper, zinc, selenium, glutathione peroxidase and superoxide dismutase levels in epileptic children before and after 1 year of sodium valproate and carbamazepine therapy. Epilepsy Res 48:71–75

    Article  CAS  PubMed  Google Scholar 

  58. Dal-Pizzol F, Klamt F, Vianna MM, Schröder N, Quevedo J, Benfato MS, Moreira JC, Walz R (2000) Lipid peroxidation in hippocampus early and late after status epilepticus induced by pilocarpine or kainic acid in Wistar rats. Neurosci Lett 291:179–182

    Article  CAS  PubMed  Google Scholar 

  59. Kubera M, Budziszewska B, Jaworska-Feil L, Basta-Kaim A, Leśkiewicz M, Tetich M, Maes M, Kenis G, Marciniak A, Czuczwar SJ, Jagła G, Nowak W, Lasoń W (2004) Effect of topiramate on the kainate-induced status epilepticus, lipid peroxidation and immunoreactivity of rats. Pol J Pharmacol 56:553–561

    CAS  PubMed  Google Scholar 

  60. Moghadaszadeh B, Petit N, Jaillard C, Brockington M, Roy SQ, Merlini L, Romero N, Estournet B, Desguerre I, Chaigne D, Muntoni F, Topaloglu H, Guicheney P (2001) Mutations in SEPN1 cause congenital muscular dystrophy with spinal rigidity and restrictive respiratory syndrome. Nat Genet 29:17–18

    Article  CAS  PubMed  Google Scholar 

  61. Shams S, Ashrafi MR, Nori M, Irani H, Ashtiani MTH, Mohseni A (2007) Selenium and glutathione peroxidase deficiency in epileptic children. Iran J Pediatr 17:173–178

    Google Scholar 

  62. Volpe SL, Schall JI, Gallagher PR, Stallings VA, Bergqvist AGC (2007) Nutrition intake of children with intractable epilepsy compared with health children. J Am Diet Assoc 107:1014–1018

    Article  CAS  PubMed  Google Scholar 

  63. Weber GF, Maertens P, Meng XZ, Pippenger CE (1991) Glutathione peroxidase deficiency and childhood seizures. Lancet 337:1443–1444

    Article  CAS  PubMed  Google Scholar 

  64. Ramaekers VT, Calomme M, Vanden Berghe D, Makropoulos W (1994) Selenium deficiency triggering intractable seizures. Neuropediatrics 25:217–233

    Article  CAS  PubMed  Google Scholar 

  65. Rubin JJ, Willmore LJ (1980) Prevention of iron-induced epileptiform discharges in rats by treatment of antiperoxidants. Exp Neurol 67:472–480

    Article  CAS  PubMed  Google Scholar 

  66. Willmore LJ, Rubin JJ (1981) Antiperoxidant treatment and iron-induced epileptiform discharges in the rat: EEG and histopathological studies. Neurology 31:63–69

    CAS  PubMed  Google Scholar 

  67. Kim H, Jhoo W, Shin E, Bing G (2000) Selenium deficiency potentiates methamphetamine-induced nigral neuronal loss:comparasion with MPTP model. Brain Res 862:247–252

    Article  CAS  PubMed  Google Scholar 

  68. Savaskan NE, Brauer AU, Kuhbacher M, Eyupoglu IY, Kyriakopoulos A, Ninnemann O, Behne D, Nitsch R (2002) Selenium deficiency increases susceptibility to glutamate-induced excitotoxicity. FASEB J 17:112–114

    PubMed  Google Scholar 

  69. Brown MR, Cohen HJ, Lyons JM, Curtis TW, Thunberg B, Cochran WJ, Klish WJ (1986) Proximal muscle weakness and selenium deficiency associated with long term parenteral nutrition. Am J Clin Nutr 43:549–554

    CAS  PubMed  Google Scholar 

  70. Freitas RM, Vasconcelos SM, Souza FC, Viana GS, Fonteles MM (2005) Oxidative stress in the hippocampus after pilocarpine-induced status epilepticus in Wistar rats. FEBS J 272:1307–1312

    Article  CAS  PubMed  Google Scholar 

  71. Xu K, Stringer JL (2008) Antioxidant and free radical scavengers do not consistently delay seizure onset in animal models of acute seizures. Epilepsy Behav 13:77–82

    Article  PubMed  Google Scholar 

  72. Wang XF, Cynader MS (2000) Astrocytes provide cysteine to neurons by releasing glutathione. J Neurochem 74:1434–1442

    Article  CAS  PubMed  Google Scholar 

  73. Prohaska JR, Ganther HE (1976) Selenium and glutathione peroxidase in developing rat brain. J Neurochem 27:1379–1387

    Article  CAS  PubMed  Google Scholar 

  74. Ben-Menachem E, Kyllerman M, Marklund S (2000) Superoxide dismutase and glutathione peroxidase function in progressive myoclonus epilepsies. Epilepsy Res 40:33–39

    Article  CAS  PubMed  Google Scholar 

  75. Turkdogan D, Toplan S, Karakoç Y (2002) Lipid peroxidation and antioxidative enzyme activities in childhood epilepsy. J Child Neurol 17:673–676

    Article  PubMed  Google Scholar 

  76. McGirr LG, Hadley M, Draper HH (1985) Identification of N alpha-acetyl-epsilon-(2-propenal)lysine as a urinary metabolite of malondialdehyde. J Biol Chem 260:15427–154231

    CAS  PubMed  Google Scholar 

  77. Cengiz M, Yüksel A, Seven M (2000) The effects of carbamazepine and valproic acid on the erythrocyte glutathione, glutathione peroxidase, superoxide dismutase and serum lipid peroxidation in epileptic children. Pharmacol Res 41:423–425

    Article  CAS  PubMed  Google Scholar 

  78. Nazıroğlu M, Kutluhan S, Uğuz AC, Çelik Ö, Bal R, Butterworth PJ (2009) Topiramate and vitamin E modulates the electroencephalography records, brain microsomal and blood antioxidant redox system in pentylentetrazol-induced seizure of rats. J Memb Biol. doi:10.1007/s00232-009-9177-1

  79. Shaw JCL (1979) Trace elements in the fetus and young infants. Am J Dis Child 133:1260–1264

    CAS  PubMed  Google Scholar 

  80. Naghii MR (2002) A suggested method for the prediction of the oxidation resistance of low density lipoprotein by determination of lag time. Nutr Health 16:107–112

    CAS  PubMed  Google Scholar 

  81. Tabatatabaei AR, Thies RL, Abbott FS (1999) Assessing the mechanism of metabolism dependent valproic acid-induced in vitro citoxicity. Chem Res Toxicol 12:323–330

    Article  Google Scholar 

  82. Michoulas A, Tong V, Teng XW, Chang TK, Abbott FS, Farrell K (2006) Oxidative stress in children receiving valproic acid. J Pediatr 149:692–696

    Article  CAS  PubMed  Google Scholar 

  83. Verrotti A, Scardapane A, Franzoni E, Manco R, Chiarelli F (2008) Increased oxidative stress in epileptic children treated with valproic acid. Epilepsy Res 78:171–177

    Article  CAS  PubMed  Google Scholar 

  84. Kürekçi AE, Alpay F, Tanindi S, Gökçay E, Ozcan O, Akin R, Işimer A, Sayal A (1995) Plasma trace element, plasma glutathione peroxidase, and superoxide dismutase levels in epileptic children receiving antiepileptic drug therapy. Epilepsia 36:600–604

    Article  PubMed  Google Scholar 

  85. Pippenger CE, Meng X, Van Lente F, Rothner AD (1989) Valproate therapy depresses GSH-Px and SOD enzyme activity. A possible mechanism for VPA induced idiosyncratic drug toxicity. Clin Chem 35:1173–1177

    Google Scholar 

  86. Lee SR, Kim SP, Kim JE (2000) Protective effect of topiramate against hippocampal neuronal damage after global ischemia in the gerbils. Neurosci Lett 281:183–186

    Article  CAS  PubMed  Google Scholar 

  87. Nazıroğlu M (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 32:1990–2001

    Article  PubMed  CAS  Google Scholar 

  88. Kovács R, Schuchmann S, Gabriel S, Kann O, Kardos J, Heinemann U (2002) Free radical-mediated cell damage after experimental status epilepticus in hippocampal slice cultures. J Neurophysiol 88:2909–2918

    Article  PubMed  Google Scholar 

  89. Colegrove SL, Albreacht MA, Friel DD (2000) Dissection of mitochondrial Ca2+ uptake and release fluxes in situ after depeolarization-evoked [Ca2+]i elevations in sympathetic neurons. J Gen Physiol 115:351–370

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Peter Butterworth (Nutritional Sciences Division, King’s College London) for help with the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Nazıroğlu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazıroğlu, M. Role of Selenium on Calcium Signaling and Oxidative Stress-induced Molecular Pathways in Epilepsy. Neurochem Res 34, 2181–2191 (2009). https://doi.org/10.1007/s11064-009-0015-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-0015-8

Keywords

Navigation