Design and Assessment of a Potent Sodium Channel Blocking Derivative of Mexiletine for Minimizing Experimental Neuropathic Pain in Several Rat Models

Abstract

Physical or chemical damage to peripheral nerves can result in neuropathic pain which is not easily alleviated by conventional analgesic drugs. Substantial evidence has demonstrated that voltage-gated Na+ channels in the membrane of damaged nerves play a key role in the establishment and maintenance of pathological neuronal excitability not only of these peripheral nerves but also in the second- and third-order neurons in the pain pathway to the cerebral cortex. Na+ channel blocking drugs have been used in treating neuropathic pain with limited success mainly because of a preponderance of side-effects. We have developed an analogue of mexiletine which is approximately 80 times more potent than mexiletine in competing with the radioligand, 3H-batrachotoxinin for binding to Na+ channels in rat brain membranes and also it is much more lipophilic than mexiletine which should enhance its uptake into the brain to block the increased expression of Na+ channels on second- and third-order neurons of the pain pathway. This analogue, HFI-1, has been tested in three different rat models of neuropathic pain (formalin paw model, ligated spinal nerve model and contusive spinal cord injury model) and found to be more effective in reducing pain behaviours than mexiletine.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Kennedy JD (2007) Neuropathic pain: molecular complexity underlies continuing unmet medical need. J Med Chem 50:2547–2556. doi:10.1021/jm061023c

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Melzack R (2008) The future of pain. Nat Rev Drug Discov 7:629. doi:10.1038/nrd2640

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Butera JA (2007) Current and emerging targets to treat neuropathic pain. J Med Chem 50:2543–2546. doi:10.1021/jm061015w

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Arnér S, Meyerson BA (1988) Lack of analgesic effect of opioids on neuropathic and idiopathic forms of pain. Pain 33:11–23. doi:10.1016/0304-3959(88)90198-4

    PubMed  Article  Google Scholar 

  5. 5.

    Aldrich RW, Corey DP, Stevens CF (1983) A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature 306:436–441. doi:10.1038/306436a0

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Gold MS (2008) Na+ channel blockers for the treatment of pain. Context is everything, almost. Exp Neurol 210:1–6. doi:10.1016/j.expneurol.2007.12.001

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Lindia JA, Kohler MG, Martin WJ, Abbadie C (2005) Relationship between sodium channel Nav 1.3 expression and neuropathic pain behavior in rats. Pain 117:145–153. doi:10.1016/j.pain.2005.05.027

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Waxman SG, Hains BC (2006) Fire and phantoms after spinal cord injury: Na+ channels and central pain. Trends Neurosci 29:207–214. doi:10.1016/j.tins.2006.02.003

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Kyle DJ, Ilyin VI (2007) Sodium channel blockers. J Med Chem 50:2583–2588. doi:10.1021/jm061005v

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Wang SY, Wang GK (2003) Voltage-gated sodium channels as primary targets of diverse lipid-soluble neurotoxins. Cell Signal 15:151–159. doi:10.1016/S0898-6568(02)00085-2

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Jett MF, McGuirk J, Waligora D, Hunter JC (1997) The effects of mexiletine, desipramine and fluoxetine in rat models involving central sensitization. Pain 69:161–169. doi:10.1016/S0304-3959(96)03231-9

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Carroll IR, Kaplan KM, Mackey SC (2008) Mexiletine therapy for chronic pain: survival analysis identifies factors predicting clinical success. J Pain Symptom Manage 35:321–326. doi:10.1016/j.jpainsymman.2007.04.022

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Kowey PR, Marinchak RA, Rials SJ, Bharucha DB (2000) Classification and pharmacology of antiarrhythmic drugs. Am Heart J 140:12–20. doi:10.1067/mhj.2000.106640

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Postma SW, Catterall WA (1984) Inhibition of binding of 3H-batrachotoxinin A2-α-benzoate to sodium channels by local anesthetics. Mol Pharmacol 25:219–227

    PubMed  CAS  Google Scholar 

  15. 15.

    Abbadie C, Taylor BK, Peterson MA, Basbaum AI (1997) Differential contribution of the two phases of the formalin test to the pattern of c-fos expression in the rat spinal cord: studies with remifentanil and lidocaine. Pain 69:101–110. doi:10.1016/S0304-3959(96)03285-X

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Kim SH, Chung JM (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50:355–363. doi:10.1016/0304-3959(92)90041-9

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63. doi:10.1016/0165-0270(94)90144-9

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Iannotti C, Zhang YP, Shields CB, Han Y, Burke DS, Xu XM (2004) A neuroprotective role of glial cell-derived neurotrophic factor following moderate spinal cord contusion injury. Exp Neurol 189:317–332. doi:10.1016/j.expneurol.2004.05.033

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Hargreaves K, Dubner R, Brown F, Flores C, Joris J (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32:77–88. doi:10.1016/0304-3959(88)90026-7

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Scheff SW, Saucier DA, Cain ME (2002) A statistical method for analyzing rating scale data: the BBB locomotor score. J Neurotrauma 19:1251–1260. doi:10.1089/08977150260338038

    PubMed  Article  Google Scholar 

  21. 21.

    Cheng KI, Shieh JP, Lin CN, Chu KS, Kwan AL, Hou CH, Wang JJ (2006) Mexiletine has a local anesthetic effect on sciatic nerve blockade in rats. Drug Dev Res 67:905–909. doi:10.1002/ddr.20162

    Article  CAS  Google Scholar 

  22. 22.

    Jarrott B (2009) Aryloxy amine compounds and their use as sodium channel modulators. Patent WO 2009/055869

  23. 23.

    Dickenson AH, Sullivan AF (1987) Peripheral origins and central modulation of subcutaneous formalin-induced activity of rat dorsal horn neurons. Neurosci Lett 83:207–211. doi:10.1016/0304-3940(87)90242-4

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Taylor BK, Peterson MA, Basbaum AI (1997) Early nociceptive events contribute to the temporal profile, but not the magnitude, of the tonic response to subcutaneous formalin. J Pharmacol Exp Ther 280:876–883

    PubMed  CAS  Google Scholar 

  25. 25.

    Scholz J, Woolf CJ (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 10:1361–1368. doi:10.1038/nn1992

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Milligan ED, Watkins LR (2009) Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci 10:23–36. doi:10.1038/nrn2533

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Eide PK (1998) Pathophysiological mechanisms of central neuropathic pain after spinal cord injury. Spinal Cord 36:601–612. doi:10.1038/sj.sc.3100737

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Finnerup BW, Biering-Sorensen F, Johannesen IL, Terkelsen AJ, Juhl GI, Kristensen AD, Sindrup SH, Bach FW, Jensen TS (2005) Intravenous lidocaine relieves spinal cord injury pain: a randomized controlled trial. Anesthesiol 102:1023–1030. doi:10.1097/00000542-200505000-00023

    Article  CAS  Google Scholar 

  29. 29.

    Young EE, Baumbauer KM, Hillyer J, Joynes RL (2007) Local anesthetic treatment significantly attenuates acute pain responding but does not prevent the neonatal injury-induced reduction in adult spinal behavioral plasticity. Behav Neurosci 121:1073–1081. doi:10.1037/0735-7044.121.5.1073

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Wu WP, Nordmark J, Wiesenfeld-Hallin Z, Xu XJ (2000) Lack of stereoselectivity for the antiallodynic effect of mexiletine in spinally injured rats. Eur J Pain 4:409–412. doi:10.1053/eujp.2000.0201

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Inoue K (2006) ATP receptors of microglia involved in pain. Novartis Found Symp 276:263–272. doi:10.1002/9780470032244.ch21

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Craner MJ, Damarjian TG, Liu S, Hains BC, Lo AC, Black JA, Newcombe J, Cuzner ML, Waxman SG (2005) Sodium channels contribute to microglia/macrophage activation and function in EAE and MS. Glia 49:220–229. doi:10.1002/glia.20112

    PubMed  Article  Google Scholar 

  33. 33.

    Rosenzweig ES, McDonald JW (2004) Rodent models for treatment of spinal cord injury: research trends and progress toward useful repair. Curr Opin Neurol 17:121–131. doi:10.1097/00019052-200404000-00007

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

The experimental studies were supported by grants to B.J. from Neurosciences Victoria and the Victorian Neurotrauma Initiative.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bevyn Jarrott.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weston, R.M., Subasinghe, K.R., Staikopoulos, V. et al. Design and Assessment of a Potent Sodium Channel Blocking Derivative of Mexiletine for Minimizing Experimental Neuropathic Pain in Several Rat Models. Neurochem Res 34, 1816–1823 (2009). https://doi.org/10.1007/s11064-009-0012-y

Download citation

Keywords

  • Voltage gated sodium channels
  • Sodium channel blockers
  • Mexiletine
  • HFI-1
  • Neuropathic pain
  • Rodent models of neuropathic pain