Skip to main content

Advertisement

Log in

Gene Expression Profiling of Rat Cerebral Cortex Development Using cDNA Microarrays

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

A large amount of genetic information is devoted to brain development. In this study, the cortical development in rats at eight developmental time points (four embryonic [E15, E16, E18, E20] and four postnatal [P0, P7, P14, P21]) was studied using a rat brain 10K cDNA microarray. Significant differential expression was observed in 467 of the 9,805 genes represented on the microarray. Two major Gene Ontology classes—cell differentiation and cell–cell signaling—were found to be important for cortical development. Genes for ribosomal proteins, heterogeneous nuclear ribonucleoproteins, and tubulin proteins were up-regulated in the embryonic stage, coincidently with extensive proliferation of neural precursor cells as the major component of the cerebral cortex. Genes related to neurogenesis, including neurite regeneration, neuron development, and synaptic transmission, were more active in adulthood, when the cerebral cortex reached maturity. The many developmentally modulated genes identified by this approach will facilitate further studies of cortical functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rakic P (1988) Specification of cerebral cortical areas. Science 241:170–176. doi:10.1126/science.3291116

    Article  PubMed  CAS  Google Scholar 

  2. Funatsu N, Inoue T, Nakamura S (2004) Gene expression analysis of the late embryonic mouse cerebral cortex using DNA microarray: identification of several region- and layer-specific genes. Cereb Cortex 14:1031–1044. doi:10.1093/cercor/bhh063

    Article  PubMed  Google Scholar 

  3. Webb SJ, Monk CS, Nelson CA (2001) Mechanisms of postnatal neurobiological development: implications for human development. Dev Neuropsychol 19:147–171. doi:10.1207/S15326942DN1902_2

    Article  PubMed  CAS  Google Scholar 

  4. Semeralul MO, Boutros PC, Likhodi O et al (2006) Microarray analysis of the developing cortex. J Neurobiol 66:1646–1658. doi:10.1002/neu.20302

    Article  PubMed  CAS  Google Scholar 

  5. Giedd JN (2004) Structural magnetic resonance imaging of the adolescent brain. Ann N Y Acad Sci 1021:77–85. doi:10.1196/annals.1308.009

    Article  PubMed  Google Scholar 

  6. Usui H, Falk JD, Dopazo A et al (1994) Isolation of clones of rat striatum-specific mRNAs by directional tag PCR subtraction. J Neurosci 14:4915–4926

    PubMed  CAS  Google Scholar 

  7. Nagano T, Nakamura A, Mori Y et al (1998) Differentially expressed olfactomedin-related glycoproteins (Pancortins) in the brain. Brain Res Mol Brain Res 53:13–23. doi:10.1016/S0169-328X(97)00271-4

    Article  PubMed  CAS  Google Scholar 

  8. Mizushima K, Miyamoto Y, Tsukahara F et al (2000) A novel G-protein-coupled receptor gene expressed in striatum. Genomics 69:314–321. doi:10.1006/geno.2000.6340

    Article  PubMed  CAS  Google Scholar 

  9. Luthi-Carter R, Strand A, Peters NL et al (2000) Decreased expression of striatal signaling genes in a mouse model of Huntington’s disease. Hum Mol Genet 9:1259–1271. doi:10.1093/hmg/9.9.1259

    Article  PubMed  CAS  Google Scholar 

  10. Napolitano M, Centonze D, Calce A et al (2002) Experimental parkinsonism modulates multiple genes involved in the transduction of dopaminergic signals in the striatum. Neurobiol Dis 10:387–395. doi:10.1006/nbdi.2002.0525

    Article  PubMed  CAS  Google Scholar 

  11. Mirnics K, Middleton FA, Marquez A et al (2000) Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 28:53–67. doi:10.1016/S0896-6273(00)00085-4

    Article  PubMed  CAS  Google Scholar 

  12. Sun Y, Zhang L, Johnston NL et al (2001) Serial analysis of gene expression in the frontal cortex of patients with bipolar disorder. Br J Psychiatry Suppl 41:s137–s141. doi:10.1192/bjp.178.41.s137

    Article  PubMed  CAS  Google Scholar 

  13. von Gertten C, Flores Morales A, Holmin S et al (2005) Genomic responses in rat cerebral cortex after traumatic brain injury. BMC Neurosci 6:69. doi:10.1186/1471-2202-6-69

    Article  Google Scholar 

  14. Xiang W, Windl O, Westner IM et al (2005) Cerebral gene expression profiles in sporadic Creutzfeldt-Jakob disease. Ann Neurol 58:242–257. doi:10.1002/ana.20551

    Article  PubMed  CAS  Google Scholar 

  15. Jamali S, Bartolomei F, Robaglia-Schlupp A et al (2006) Large-scale expression study of human mesial temporal lobe epilepsy: evidence for dysregulation of the neurotransmission and complement systems in the entorhinal cortex. Brain 129:625–641. doi:10.1093/brain/awl001

    Article  PubMed  Google Scholar 

  16. Sandberg R, Yasuda R, Pankratz DG et al (2000) Regional and strain-specific gene expression mapping in the adult mouse brain. Proc Natl Acad Sci USA 97:11038–11043. doi:10.1073/pnas.97.20.11038

    Article  PubMed  CAS  Google Scholar 

  17. Pavlidis P, Noble WS (2001) Analysis of strain and regional variation in gene expression in mouse brain. Genome Biol 2:RESEARCH0042

    Google Scholar 

  18. Siu IM, Lal A, Riggins GJ (2001) A database for regional gene expression in the human brain. Brain Res Gene Expr Patterns 1:33–38. doi:10.1016/S1567-133X(01)00006-0

    Article  PubMed  CAS  Google Scholar 

  19. Zirlinger M, Kreiman G, Anderson DJ (2001) Amygdala-enriched genes identified by microarray technology are restricted to specific amygdaloid subnuclei. Proc Natl Acad Sci USA 98:5270–5275. doi:10.1073/pnas.091094698

    Article  PubMed  CAS  Google Scholar 

  20. Bonaventure P, Guo H, Tian B et al (2002) Nuclei and subnuclei gene expression profiling in mammalian brain. Brain Res 943:38–47. doi:10.1016/S0006-8993(02)02504-0

    Article  PubMed  CAS  Google Scholar 

  21. de Chaldee M, Gaillard MC, Bizat N et al (2003) Quantitative assessment of transcriptome differences between brain territories. Genome Res 13:1646–1653. doi:10.1101/gr.1173403

    Article  PubMed  Google Scholar 

  22. Mody M, Cao Y, Cui Z et al (2001) Genome-wide gene expression profiles of the developing mouse hippocampus. Proc Natl Acad Sci USA 98:8862–8867. doi:10.1073/pnas.141244998

    Article  PubMed  CAS  Google Scholar 

  23. Kagami Y, Furuichi T (2001) Investigation of differentially expressed genes during the development of mouse cerebellum. Brain Res Gene Expr Patterns 1:39–59. doi:10.1016/S1567-133X(01)00007-2

    Article  PubMed  CAS  Google Scholar 

  24. Lim CR, Fukakusa A, Matsubara K (2004) Gene expression profiling of mouse postnatal cerebellar development using cDNA microarrays. Gene 333:3–13. doi:10.1016/j.gene.2004.02.026

    Article  PubMed  CAS  Google Scholar 

  25. Matsuki T, Hori G, Furuichi T (2005) Gene expression profiling during the embryonic development of mouse brain using an oligonucleotide-based microarray system. Brain Res Mol Brain Res 136:231–254. doi:10.1016/j.molbrainres.2005.02.008

    Article  PubMed  CAS  Google Scholar 

  26. Yu DH, Lee KH, Lee JY et al (2004) Changes of gene expression profiles during neuronal differentiation of central nervous system precursors treated with ascorbic acid. J Neurosci Res 78:29–37. doi:10.1002/jnr.20220

    Article  PubMed  CAS  Google Scholar 

  27. Muhlfriedel S, Kirsch F, Gruss P et al (2007) Novel genes differentially expressed in cortical regions during late neurogenesis. Eur J NeuroSci 26:33–50. doi:10.1111/j.1460-9568.2007.05639.x

    Article  PubMed  Google Scholar 

  28. Sato A, Sekine Y, Saruta C et al (2008) Cerebellar development transcriptome database (CDT-DB): profiling of spatio-temporal gene expression during the postnatal development of mouse cerebellum. Neural Netw 21:1056–1069

    Article  PubMed  Google Scholar 

  29. Diaz E, Ge Y, Yang YH et al (2002) Molecular analysis of gene expression in the developing pontocerebellar projection system. Neuron 36:417–434. doi:10.1016/S0896-6273(02)01016-4

    Article  PubMed  CAS  Google Scholar 

  30. Matoba R, Kato K, Saito S et al (2000) Gene expression in mouse cerebellum during its development. Gene 241:125–131. doi:10.1016/S0378-1119(99)00457-6

    Article  PubMed  CAS  Google Scholar 

  31. Suzuki T, Higgins PJ, Crawford DR (2000) Control selection for RNA quantitation. Biotechniques 29:332–337

    PubMed  CAS  Google Scholar 

  32. de Jonge HJ, Fehrmann RS, de Bont ES et al (2007) Evidence based selection of housekeeping genes. PLoS ONE 2:e898. doi:10.1371/journal.pone.0000898

    Article  PubMed  Google Scholar 

  33. Lee CJ, Appleby VJ, Orme AT et al (2002) Differential expression of SOX4 and SOX11 in medulloblastoma. J Neurooncol 57:201–214. doi:10.1023/A:1015773818302

    Article  PubMed  Google Scholar 

  34. Schwartz PH, Nethercott H, Kirov II et al (2005) Expression of neurodevelopmental markers by cultured porcine neural precursor cells. Stem Cells 23:1286–1294. doi:10.1634/stemcells.2004-0306

    Article  PubMed  Google Scholar 

  35. Kumar S, Harvey KF, Kinoshita M et al (1997) cDNA cloning, expression analysis, and mapping of the mouse Nedd4 gene. Genomics 40:435–443. doi:10.1006/geno.1996.4582

    Article  PubMed  CAS  Google Scholar 

  36. Rothermundt M, Peters M, Prehn JH et al (2003) S100B in brain damage and neurodegeneration. Microsc Res Tech 60:614–632. doi:10.1002/jemt.10303

    Article  PubMed  CAS  Google Scholar 

  37. Nielsen JA, Hudson LD, Armstrong RC (2002) Nuclear organization in differentiating oligodendrocytes. J Cell Sci 115:4071–4079. doi:10.1242/jcs.00103

    Article  PubMed  CAS  Google Scholar 

  38. Yu P, Chen Y, Tagle DA et al (2002) PJA1, encoding a RING-H2 finger ubiquitin ligase, is a novel human X chromosome gene abundantly expressed in brain. Genomics 79:869–874. doi:10.1006/geno.2002.6770

    Article  PubMed  CAS  Google Scholar 

  39. Le-Niculescu H, Balaraman Y, Patel S et al (2007) Towards understanding the schizophrenia code: an expanded convergent functional genomics approach. Am J Med Genet B Neuropsychiatr Genet 144B:129–158. doi:10.1002/ajmg.b.30481

    Article  PubMed  CAS  Google Scholar 

  40. Sjogren M, Blomberg M, Jonsson M et al (2001) Neurofilament protein in cerebrospinal fluid: a marker of white matter changes. J Neurosci Res 66:510–516. doi:10.1002/jnr.1242

    Article  PubMed  CAS  Google Scholar 

  41. Sun T, Xiao HS, Zhou PB et al (2006) Differential expression of synaptoporin and synaptophysin in primary sensory neurons and up-regulation of synaptoporin after peripheral nerve injury. Neuroscience 141:1233–1245. doi:10.1016/j.neuroscience.2006.05.010

    Article  PubMed  CAS  Google Scholar 

  42. Kohno K, Izumi H, Uchiumi T et al (2003) The pleiotropic functions of the Y-box-binding protein, YB-1. Bioessays 25:691–698. doi:10.1002/bies.10300

    Article  PubMed  CAS  Google Scholar 

  43. En-Nia A, Yilmaz E, Klinge U et al (2005) Transcription factor YB-1 mediates DNA polymerase alpha gene expression. J Biol Chem 280:7702–7711. doi:10.1074/jbc.M413353200

    Article  PubMed  CAS  Google Scholar 

  44. Lu ZH, Books JT, Ley TJ (2005) YB-1 is important for late-stage embryonic development, optimal cellular stress responses, and the prevention of premature senescence. Mol Cell Biol 25:4625–4637. doi:10.1128/MCB.25.11.4625-4637.2005

    Article  PubMed  CAS  Google Scholar 

  45. De Vries L, Zheng B, Fischer T et al (2000) The regulator of G protein signaling family. Annu Rev Pharmacol Toxicol 40:235–271. doi:10.1146/annurev.pharmtox.40.1.235

    Article  PubMed  Google Scholar 

  46. Erdely HA, Lahti RA, Lopez MB et al (2004) Regional expression of RGS4 mRNA in human brain. Eur J NeuroSci 19:3125–3128. doi:10.1111/j.0953-816X.2004.03364.x

    Article  PubMed  Google Scholar 

  47. Grillet N, Pattyn A, Contet C et al (2005) Generation and characterization of Rgs4 mutant mice. Mol Cell Biol 25:4221–4228. doi:10.1128/MCB.25.10.4221-4228.2005

    Article  PubMed  CAS  Google Scholar 

  48. Gu Z, Jiang Q, Yan Z (2007) RGS4 modulates serotonin signaling in prefrontal cortex and links to serotonin dysfunction in a rat model of schizophrenia. Mol Pharmacol 71:1030–1039. doi:10.1124/mol.106.032490

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MEST) (NO. 2006-04424) and by the research fund of Hanyang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Sung Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

MOESM1 (XLS 205 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, KH., Yu, DH. & Lee, YS. Gene Expression Profiling of Rat Cerebral Cortex Development Using cDNA Microarrays. Neurochem Res 34, 1030–1038 (2009). https://doi.org/10.1007/s11064-008-9867-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9867-6

Keywords

Navigation