Neurochemical Research

, 34:1021 | Cite as

Mitochondrial Dysfunction and Psychiatric Disorders

  • Gislaine T. Rezin
  • Graziela Amboni
  • Alexandra I. Zugno
  • João Quevedo
  • Emilio L. Streck


Mitochondrial oxidative phosphorylation is the major ATP-producing pathway, which supplies more than 95% of the total energy requirement in the cells. Damage to the mitochondrial electron transport chain has been suggested to be an important factor in the pathogenesis of a range of psychiatric disorders. Tissues with high energy demands, such as the brain, contain a large number of mitochondria, being therefore more susceptible to reduction of the aerobic metabolism. Mitochondrial dysfunction results from alterations in biochemical cascade and the damage to the mitochondrial electron transport chain has been suggested to be an important factor in the pathogenesis of a range of neuropsychiatric disorders, such as bipolar disorder, depression and schizophrenia. Bipolar disorder is a prevalent psychiatric disorder characterized by alternating episodes of mania and depression. Recent studies have demonstrated that important enzymes involved in brain energy are altered in bipolar disorder patients and after amphetamine administration, an animal model of mania. Depressive disorders, including major depression, are serious and disabling. However, the exact pathophysiology of depression is not clearly understood. Several works have demonstrated that metabolism is impaired in some animal models of depression, induced by chronic stress, especially the activities of the complexes of mitochondrial respiratory chain. Schizophrenia is a devastating mental disorder characterized by disturbed thoughts and perception, alongside cognitive and emotional decline associated with a severe reduction in occupational and social functioning, and in coping abilities. Alterations of mitochondrial oxidative phosphorylation in schizophrenia have been reported in several brain regions and also in platelets. Abnormal mitochondrial morphology, size and density have all been reported in the brains of schizophrenic individuals. Considering that several studies link energy impairment to neuronal death, neurodegeneration and disease, this review article discusses energy impairment as a mechanism underlying the pathophysiology of some psychiatric disorders, like bipolar disorder, depression and schizophrenia.


Mitochondria Metabolism Brain Bipolar disorder Depression Schizophrenia 



5-Hydroxytryptamine 1A


5-Hydroxytryptamine 1B


Anterior cingulate cortex


Adenosine diphosphate


Adenosine triphosphate


Adenosine monophosphate cyclic


cAMP response element-binding




Mitochondrial deoxyribonucleic acid


Messenger ribonucleic acid


Magnetic resonance spectroscopy


Polymerase chain reaction


Positron emission tomography


Regional cerebral blood flow


Reactive oxygen species



The authors would like to thank UNESC (Brazil), FAPESC (Brazil) and CNPq (Brazil) that supported the studies of our group that are cited in this review.


  1. 1.
    Calabrese V, Scapagnini G, Giuffrida-Stella AM et al (2001) Mitochondrial involvement in brain function and dysfunction: relevance to aging, neurodegenerative disorders and longevity. Neurochem Res 26:739–764. doi: 10.1023/A:1010955807739 PubMedCrossRefGoogle Scholar
  2. 2.
    Horn D, Barrientos A (2008) Mitochondrial copper metabolism and delivery to cytochrome c oxidase. IUBMB life. doi: 10.1002/iub.50
  3. 3.
    Fattal O, Budur K, Vaughan AJ et al (2006) Review of the literature on major mental disorders in adult patients with mitochondrial diseases. Psychosomatics 47:1–7. doi: 10.1176/appi.psy.47.1.1 PubMedCrossRefGoogle Scholar
  4. 4.
    Madrigal JLM, Olivenza R, Moro MA et al (2001) Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain. Neuropsychopharmacology 24:420–429. doi: 10.1016/S0893-133X(00)00208-6 PubMedCrossRefGoogle Scholar
  5. 5.
    Boekema EJ, Braun HP (2007) Supramolecular structure of the mitochondrial oxidative phosphorylation system. J Biol Chem 282:1–4. doi: 10.1074/jbc.R600031200 PubMedCrossRefGoogle Scholar
  6. 6.
    Prabakaran S, Swatton JE, Ryan MM et al (2004) Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9:684–697. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  7. 7.
    Gur RE, Resnick SM, Alavi A et al (1987) Regional brain function in schizophrenia II: repeated evaluation with positron emission tomography. Arch Gen Psychiatry 44:126–129PubMedGoogle Scholar
  8. 8.
    Belmaker RH (2004) Bipolar disorder. N Engl J Med 351:476–486. doi: 10.1056/NEJMra035354 PubMedCrossRefGoogle Scholar
  9. 9.
    Kupfer DJ (2005) The increasing medical burden in bipolar disorder. JAMA 293:2528–2530. doi: 10.1001/jama.293.20.2528 PubMedCrossRefGoogle Scholar
  10. 10.
    Müller-Oerlinghausen B, Berghöfer A, Bauer M (2002) Bipolar disorder. Lancet 359:241–247. doi: 10.1016/S0140-6736(02)07450-0 PubMedCrossRefGoogle Scholar
  11. 11.
    Bonetto GG, Garbini M, Vieta E (2006) Bipolar depression: What are we doing? J Affect Disord 98:169–171Google Scholar
  12. 12.
    Goodwin FK, Jamison KR (1990) Manic-depressive illness. Oxford University Press, New YorkGoogle Scholar
  13. 13.
    Woods SW (2000) The economic burden of bipolar disease. J Clin Psychiatry 61:38–41PubMedGoogle Scholar
  14. 14.
    Goldberg JF, Garno JL, Leon AC et al (1998) Rapid titration of mood stabilizers predicts remission from mixed or pure mania in bipolar patients. J Clin Psychiatry 59:151–158PubMedGoogle Scholar
  15. 15.
    Maguire GA, Phillips G (2003) Optimal dosing of medications (in bipolar disorder). J Fam Pract Suppl:S22–S25Google Scholar
  16. 16.
    Coyle JT, Duman RS (2003) Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron 38:157–160. doi: 10.1016/S0896-6273(03)00195-8 PubMedCrossRefGoogle Scholar
  17. 17.
    Bezchlibnyk Y, Young LT (2002) The neurobiology of bipolar disorder: focus on signal transduction pathways and the regulation of gene expression. Can J Psychiatry 47:135–148PubMedGoogle Scholar
  18. 18.
    Manji HK, Drevets WC, Charney DS (2001) The cellular neurobiology of depression. Nat Med 7:541–547. doi: 10.1038/87865 PubMedCrossRefGoogle Scholar
  19. 19.
    Stork C, Renshaw PF (2005) Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol Psychiatry 10:900–919. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  20. 20.
    Bertolino A, Frye M, Callicott JH et al (2003) Neuronal pathology in the hippocampal area of patients with bipolar disorder: a study with proton magnetic resonance spectroscopic imaging. Biol Psychiatry 53:906–913. doi: 10.1016/S0006-3223(02)01911-X PubMedCrossRefGoogle Scholar
  21. 21.
    Deicken RF, Pegues MP, Anzalone S et al (2003) Lower concentration of hippocampal N-acetylaspartate in familial bipolar I disorder. Am J Psychiatry 160:873–882. doi: 10.1176/appi.ajp.160.5.873 PubMedCrossRefGoogle Scholar
  22. 22.
    Kato T, Kato N (2000) Mitochondrial dysfunction in bipolar disorder. Bipolar Disord 2:180–190. doi: 10.1034/j.1399-5618.2000.020305.x PubMedCrossRefGoogle Scholar
  23. 23.
    Konradi C, Eaton M, MacDonald ML et al (2004) Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 61:300–308. doi: 10.1001/archpsyc.61.3.300 PubMedCrossRefGoogle Scholar
  24. 24.
    Kato T, Takahashi S, Shioiri T et al (1993) Alterations in brain phosphorous metabolism in bipolar disorder detected by in vivo 31P and 7Li magnetic resonance spectroscopy. J Affect Disord 27:53–59. doi: 10.1016/0165-0327(93)90097-4 PubMedCrossRefGoogle Scholar
  25. 25.
    Kato T, Inubushi T, Kato N (1998) Magnetic resonance spectroscopy in affective disorders. J Neuropsychiatry Clin Neurosci 10:133–147PubMedGoogle Scholar
  26. 26.
    Deicken RF, Weiner MW, Fein G (1995) Decreased temporal lobe phosphomonoesters in bipolar disorder. J Affect Disord 33:195–199. doi: 10.1016/0165-0327(94)00089-R PubMedCrossRefGoogle Scholar
  27. 27.
    Dager SR, Friedman SD, Parow A et al (2004) Brain metabolic alterations in medication-free patients with bipolar disorder. Arch Gen Psychiatry 61:450–458. doi: 10.1001/archpsyc.61.5.450 PubMedCrossRefGoogle Scholar
  28. 28.
    Winsberg ME, Sachs N, Tate DL et al (2000) Decreased dorsolateral prefrontal N-acetyl aspartate in bipolar disorder. Biol Psychiatry 47:475–481. doi: 10.1016/S0006-3223(99)00183-3 PubMedCrossRefGoogle Scholar
  29. 29.
    Clark JB (1998) N-acetyl aspartate: a marker for neuronal loss or mitochondrial dysfunction. Dev Neurosci 20:271–276. doi: 10.1159/000017321 PubMedCrossRefGoogle Scholar
  30. 30.
    Blumberg HP, Stern E, Ricketts S et al (1999) Rostral and orbital prefrontal cortex dysfunction in the manic state of bipolar disorder. Am J Psychiatry 156:1986–1988PubMedGoogle Scholar
  31. 31.
    Blumberg HP, Stern E, Martinez D et al (2000) Increased anterior cingulate and caudate activity in bipolar mania. Biol Psychiatry 48:1045–1052. doi: 10.1016/S0006-3223(00)00962-8 PubMedCrossRefGoogle Scholar
  32. 32.
    Sun X, Wang JF, Tseng M et al (2006) Downregulation in components of the mitochondrial electron transport chain in the postmortem frontal cortex of subjects with bipolar disorder. J Psychiatry Neurosci 31:189–196PubMedGoogle Scholar
  33. 33.
    Strakowski SM, Sax KW (1998) Progressive behavioral response to repeated D-amphetamine challenge: further evidence for sensitization in humans. Biol Psychiatry 44:1171–1177. doi: 10.1016/S0006-3223(97)00454-X PubMedCrossRefGoogle Scholar
  34. 34.
    Anand A, Verhoeff P, Seneca N et al (2000) Brain SPECT imaging of amphetamine-induced dopamine release in euthymic bipolar disorder patients. Am J Psychiatry 157:1108–1114. doi: 10.1176/appi.ajp.157.7.1108 PubMedCrossRefGoogle Scholar
  35. 35.
    Machado-Vieira R, Kapczinski F, Soares JC (2004) Perspectives for the development of animal models of bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 28:209–224. doi: 10.1016/j.pnpbp.2003.10.015 PubMedCrossRefGoogle Scholar
  36. 36.
    Corrêa C, Amboni G, Assis LC et al (2007) Effects of lithium and valproate on hippocampus citrate synthase activity in an animal model of mania. Prog Neuropsychopharmacol Biol Psychiatry 31:887–891. doi: 10.1016/j.pnpbp.2007.02.005 PubMedCrossRefGoogle Scholar
  37. 37.
    Gould TD, Manji HK (2002) The Wnt signaling pathway in bipolar disorder. Neuroscientist 8:497–511PubMedCrossRefGoogle Scholar
  38. 38.
    Mai L, Jope RS, Li X (2002) BDNF-mediated signal transduction is modulated by GSK3beta and mood stabilizing agents. J Neurochem 82:75–83. doi: 10.1046/j.1471-4159.2002.00939.x PubMedCrossRefGoogle Scholar
  39. 39.
    Einat H, Yuan P, Gould TD et al (2003) The role of the extracellular signal-regulated kinase signaling pathway in mood regulation. J Neurosci 23:7311–7316PubMedGoogle Scholar
  40. 40.
    Beaulieu JM, Sotnikova TD, Yao WD et al (2004) Lithium antagonizes dopamine dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci USA 101:5099–5104. doi: 10.1073/pnas.0307921101 PubMedCrossRefGoogle Scholar
  41. 41.
    Bell EC, Willson MC, Wilman AH et al (2005) Lithium and valproate attenuate dextroamphetamine-induced changes in brain activation. Hum Psychopharmacol 20:87–96. doi: 10.1002/hup.665 PubMedCrossRefGoogle Scholar
  42. 42.
    Bessman SP, Carpenter CL (1985) The creatine-creatine phosphate energy shuttle. Annu Rev Biochem 54:831–865. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  43. 43.
    Schnyder T, Gross H, Winkler H et al (1991) Crystallization of mitochondrial creatine kinase. Growing of large protein crystals and electron microscopic investigation of microcrystals consisting of octamers. J Biol Chem 266:5318–5322PubMedGoogle Scholar
  44. 44.
    Wallimann T, Wyss M, Brdiczka D et al (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281:21–40PubMedGoogle Scholar
  45. 45.
    Burbaeva GS, Savushkina OK, Boksha IS (2003) Creatine kinase BB in brain in schizophrenia. World J Biol Psychiatry 4:177–183. doi: 10.1080/15622970310029916 PubMedCrossRefGoogle Scholar
  46. 46.
    Zugno AI, Scherer EB, Schuck PF et al (2006) Intrastriatal administration of guanidinoacetate inhibits Na+, K+-ATPase and creatine kinase activities in rat striatum. Metab Brain Dis 21:41–50. doi: 10.1007/s11011-006-9003-8 PubMedCrossRefGoogle Scholar
  47. 47.
    MacDonald ML, Naydenov A, Chu M et al (2006) Decrease in creatine kinase messenger RNA expression in the hippocampus and dorsolateral prefrontal cortex in bipolar disorder. Bipolar Disord 8:255–264. doi: 10.1111/j.1399-5618.2006.00302.x PubMedCrossRefGoogle Scholar
  48. 48.
    Streck EL, Amboni G, Scaini G et al (2008) Brain creatine kinase activity in an animal model of mania. Life Sci 82:424–429. doi: 10.1016/j.lfs.2007.11.026 PubMedCrossRefGoogle Scholar
  49. 49.
    Belmaker RH, Agam G (2008) Major depressive disorder. N Engl J Med 358:55–68. doi: 10.1056/NEJMra073096 PubMedCrossRefGoogle Scholar
  50. 50.
    Zhang X, Beaulieu JM, Sotnikova TD et al (2004) Triptophan hydroxylase-2 controls brain serotonin synthesis. Science 305:217. doi: 10.1126/science.1097540 PubMedCrossRefGoogle Scholar
  51. 51.
    Artigas F (2008) Serotonin receptors: role in depression. Actas Esp Psiquiatr 36:28–30Google Scholar
  52. 52.
    Ruhé HG, Mason NS, Schene AH (2007) Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry 12:331–359. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  53. 53.
    Zhang X, Gainetdinov RR, Beauliu JM et al (2005) Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 45:11–16. doi: 10.1016/j.neuron.2004.12.014 PubMedCrossRefGoogle Scholar
  54. 54.
    Shelton RC (2007) The molecular neurobiology of depression. Psychiatr Clin North Am 30:1–11. doi: 10.1016/j.psc.2006.12.005 PubMedCrossRefGoogle Scholar
  55. 55.
    Gillespie CF, Nemeroff CB (2005) Hypercortisolemia and depression. Psychosom Med 67:26–28. doi: 10.1097/01.psy.0000163456.22154.d2 CrossRefGoogle Scholar
  56. 56.
    Marcos B, Aisa B, Ramírez MJ (2008) Functional interaction between 5-HT6 receptors and hypothalamicepituitaryeadrenal axis: Cognitive implications. Neuropharmacology 54:708–714. doi: 10.1016/j.neuropharm.2007.11.019 PubMedCrossRefGoogle Scholar
  57. 57.
    Gardner A, Johansson A, Wibom R et al (2003) Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients. J Affect Disord 76:55–68. doi: 10.1016/S0165-0327(02)00067-8 PubMedCrossRefGoogle Scholar
  58. 58.
    Gamaro GD, Streck EL, Matté C et al (2003) Reduction of hippocampal Na+, K+-ATPase activity in rats subjected to an experimental model of depression. Neurochem Res 28:1339–1344. doi: 10.1023/A:1024988113978 PubMedCrossRefGoogle Scholar
  59. 59.
    Rezin GT, Cardoso MR, Gonçalves CL et al (2008) Inhibition of mitochondrial respiratory chain in brain of rats subjected to an experimental model of depression. Neurochem Int. doi: 10.1016/j.neuint.2008.09.012
  60. 60.
    Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 292:670–686. doi: 10.1152/ajpcell.00213.2006 CrossRefGoogle Scholar
  61. 61.
    Torres RL, Torres IL, Gamaro GD et al (2004) Lipid peroxidation and total radical-trapping potential of the lungs of rats submitted to chronic and sub-chronic stress. Braz J Med Biol Res 37:185–192. doi: 10.1590/S0100-879X2004000200004 PubMedCrossRefGoogle Scholar
  62. 62.
    Konarski JZ, McIntyre RS, Kennedy SH et al (2008) Volumetric neuroimaging investigations in mood disorders: bipolar disorder versus major depressive disorder. Bipolar Disord 10:1–37PubMedGoogle Scholar
  63. 63.
    Lee BT, Seok JH, Lee BC et al (2008) Neural correlates of affective processing in response to sad and angry facial stimuli in patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 32:778–785. doi: 10.1016/j.pnpbp.2007.12.009 PubMedCrossRefGoogle Scholar
  64. 64.
    Búrigo M, Roza CA, Bassani C et al (2006) Effect of electroconvulsive shock on mitochondrial respiratory chain in rat brain. Neurochem Res 31:1375–1379. doi: 10.1007/s11064-006-9185-9 PubMedCrossRefGoogle Scholar
  65. 65.
    Búrigo M, Roza CA, Bassani C et al (2006) Decreased creatine kinase activity caused by electroconvulsive shock. Neurochem Res 31:877–881. doi: 10.1007/s11064-006-9091-1 PubMedCrossRefGoogle Scholar
  66. 66.
    American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders DSM-IV-TR (4th edn, text revision). American Psychiatric Association, WashingtonCrossRefGoogle Scholar
  67. 67.
    McGlashan TH, Fenton WS (1992) The positive/negative distinction in schizophrenia: review of natural history validators. Arch Gen Psychiatry 49:63–72PubMedGoogle Scholar
  68. 68.
    Dror N, Karry R, Mazor M et al (2002) State dependent alterations in mitochondrial complex I activity in platelets: A potential peripheral marker for schizophrenia. Mol Psychiatry 7:995–1001. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  69. 69.
    Tamminga CA, Thaker GK, Buchanan R et al (1992) Limbic system abnormalities identified in schizophrenia using positron emission tomography with fluorodeoxyglucose and neocortical alterations with deficit syndrome. Arch Gen Psychiatry 49:522–530PubMedGoogle Scholar
  70. 70.
    Hazlett EA, Buchsbaum MS, Byne W et al (1999) Three-dimensional analysis with MRI and PET of the size, shape, and function of the thalamus in the schizophrenia spectrum. Am J Psychiatry 156:1190–1199PubMedGoogle Scholar
  71. 71.
    Chua SE, McKenna PJ (1995) Schizophrenia: A brain disease? A critical review of structural and functional cerebral abnormality in the disorder. Br J Psychiatry 166:563–582PubMedCrossRefGoogle Scholar
  72. 72.
    Andreasen NC, O’Leary DS, Flaum M et al (1997) Hypofrontality in schizophrenia: disturbed dysfunctional circuits in neuroleptic-naive patients. Lancet 349:1730–1734. doi: 10.1016/S0140-6736(96)08258-X PubMedCrossRefGoogle Scholar
  73. 73.
    Buchsbaum MS, Hazlett EA (1998) Positron emission tomography studies of abnormal glucose metabolism in schizophrenia. Schizophr Bull 24:343–346PubMedGoogle Scholar
  74. 74.
    Prince JA, Blennow K, Gottfries CG et al (1999) Mitochondrial function is differentially altered in the basal ganglia of chronic schizophrenics. Neuropsychopharmacology 21:372–379. doi: 10.1016/S0893-133X(99)00016-0 PubMedCrossRefGoogle Scholar
  75. 75.
    Fujimoto T, Nakano T, Takano T et al (1992) Study of chronic schizophrenics using 31P magnetic resonance chemical shift imaging. Acta Psychiatr Scand 86:455–462. doi: 10.1111/j.1600-0447.1992.tb03297.x PubMedCrossRefGoogle Scholar
  76. 76.
    Kegeles LS, Humaran TJ, Mann JJ (1998) In vivo neurochemistry of the brain in schizophrenia as revealed by magnetic resonance spectroscopy. Biol Psychiatry 44:382–398Google Scholar
  77. 77.
    Volz HR, Riehemann S, Maurer I et al (2000) Reduced phosphodiesters and high-energy phosphates in the frontal lobe of schizophrenic patients: a (31)P chemical shift spectroscopic-imaging study. Biol Psychiatry 47:954–961. doi: 10.1016/S0006-3223(00)00235-3 PubMedCrossRefGoogle Scholar
  78. 78.
    Uranova N, Orlovskaya D, Vikhreva O et al (2001) Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 55:597–610. doi: 10.1016/S0361-9230(01)00528-7 PubMedCrossRefGoogle Scholar
  79. 79.
    Ben-Shachar D (2002) Mitochondrial dysfunction in schizophrenia: a possible linkage to dopamine. J Neurochem 83:1241–1251. doi: 10.1046/j.1471-4159.2002.01263.x PubMedCrossRefGoogle Scholar
  80. 80.
    Uranova NA, Aganova EA (1989) Ultrastructure of synapses of the anterior limbic cortex in schizophrenia. Zh Nevropatol Psikhiatr Im S S Korsakova 89:56–59PubMedGoogle Scholar
  81. 81.
    Kung L, Roberts RC (1999) Mitochondrial pathology in human schizophrenic striatum: a post-mortem ultrastructural study. Synapse 31:67–75. doi:10.1002/(SICI)1098-2396(199901)31:1<67::AID-SYN9>3.0.CO;2-#PubMedCrossRefGoogle Scholar
  82. 82.
    Ozawa T (1998) Mitochondrial DNA mutations and age. Ann NY Acad Sci 854:128–154. doi: 10.1111/j.1749-6632.1998.tb09898.x PubMedCrossRefGoogle Scholar
  83. 83.
    Kakiuchi C, Ishiwata M, Kametani M et al (2005) Quantitative analysis of mitochondrial DNA deletions in the brains of patients with bipolar disorder and schizophrenia. Int J Neuropsychopharmacol 8:515–522. doi: 10.1017/S1461145705005213 PubMedCrossRefGoogle Scholar
  84. 84.
    Frey BN, Valvassori SS, Reus GZ et al (2006) Changes in antioxidant defense enzymes after D-amphetamine exposure: implications as an animal model of mania. Neurochem Res 31:699–703. doi: 10.1007/s11064-006-9070-6 PubMedCrossRefGoogle Scholar
  85. 85.
    Maurer I, Zierz S, Moller HJ (2001) Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia. Schizophr Res 48:125–136. doi: 10.1016/S0920-9964(00)00075-X PubMedCrossRefGoogle Scholar
  86. 86.
    Ben-Shachar D, Zuk R, Gazawi H et al (1999) Increased mitochondrial complex I activity in platelets of schizophrenia patients. Int J Neuropsychopharmacol 2:245–253. doi: 10.1017/S1461145799001649 PubMedCrossRefGoogle Scholar
  87. 87.
    Covington MA, Riedel WJ, Brown C et al (2007) Does ketamine mimic aspects of schizophrenic speech? J Psychopharmacol 21:338–346. doi: 10.1177/0269881107077729 PubMedCrossRefGoogle Scholar
  88. 88.
    Perova T, Wasserman MJ, Warsh JJ (2008) Hyperactive intracellular calcium dynamics in B lymphoblasts from patients with bipolar I disorder. Int J Neuropsychopharmacol 11:185–196. doi: 10.1017/S1461145707007973 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Gislaine T. Rezin
    • 1
  • Graziela Amboni
    • 2
  • Alexandra I. Zugno
    • 2
  • João Quevedo
    • 2
  • Emilio L. Streck
    • 1
  1. 1.Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da SaúdeUniversidade do Extremo Sul CatarinenseCriciumaBrazil
  2. 2.Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da SaúdeUniversidade do Extremo Sul CatarinenseCriciumaBrazil

Personalised recommendations