Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495. doi:10.1016/j.cell.2005.02.001
PubMed
Article
CAS
Google Scholar
Judge S, Jang YM, Smith A, Hagen T, Leeuwenburgh C (2005) Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging. FASEB J 19:419–421
PubMed
CAS
Google Scholar
Leine RL, Garland D, Oliver CN et al (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478. doi:10.1016/0076-6879(90)86141-H
Article
Google Scholar
Ames BN, Suh JH, Liu J (2006) Enzymes lose binding affinity for coenzymes and substrates with age: a strategy for remediation. In: Kaput J (ed) Nutrigenomics: concepts and technologies. Wiley, Hoboken, pp 277–291
Google Scholar
Naarro A, Boveris A (2004) Rat brain and lier mitochondria develop oxidative stress and lose enzymatic activities on aging. Am J Physiol Regul Integr Comp Physiol 287(5):R1244–R1249. doi:10.1152/ajpregu.00226.2004
Google Scholar
Feuers RJ (1998) The effects of dietary restriction on mitochondrial dysfunction in aging. Ann NY Acad Sci 854:192–201. doi:10.1111/j.1749-6632.1998.tb09902.x
PubMed
Article
CAS
Google Scholar
Liu J, Head E, Gharib AM et al (2002) Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-l-carnitine and/or R-alpha-lipoic acid. Proc Natl Acad Sci USA 99:2356–2361. doi:10.1073/pnas.261709299
PubMed
Article
CAS
Google Scholar
Liu J, Killilea DW, Ames BN (2002) Age-associated mitochondrial oxidative decay: improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-l-carnitine and/or R-alpha-lipoic acid. Proc Natl Acad Sci USA 99:1876–1881. doi:10.1073/pnas.261709098
PubMed
Article
CAS
Google Scholar
Packer L, Witt EH, Tritschler HJ (1995) Alpha-Lipoic acid as a biological antioxidant. Free Radic Biol Med 19:227–250. doi:10.1016/0891-5849(95)00017-R
PubMed
Article
CAS
Google Scholar
Suh JH, Shenvi SV, Dixon BM et al (2004) Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc Natl Acad Sci USA 101:3381–3386. doi:10.1073/pnas.0400282101
PubMed
Article
CAS
Google Scholar
Hagen TM, Ingersoll RT, Wehr CM et al (1998) Acetyl-l-carnitine fed to old rats partially restores mitochondrial function and ambulatory activity. Proc Natl Acad Sci USA 95:9562–9566. doi:10.1073/pnas.95.16.9562
PubMed
Article
CAS
Google Scholar
Alie G, Liu J, Shenk JC et al (2008) Neuronal mitochondrial amelioration by feeding acetyl-l-carnitine and lipoic acid to aged rats. J Cell Mol Med [epub ahead of print]. doi:10.1111/j.1582-4934.2008.00324.x
Milgram NW, Araujo JA, Hagen TM, Treadwell B, Ames BN (2007) Acetyl-l-carnitine and alpha-lipoic acid supplementation of aged beagle dogs improves learning in two landmark discrimination tests. FASEB J 21:3756–3762. doi:10.1096/fj.07-8531com
PubMed
Article
CAS
Google Scholar
Montgomery SA, Thal LJ, Amrein R (2003) Meta-analysis of double blind randomized controlled clinical trials of acetyl-l-carnitine versus placebo in the treatment of mild cognitive impairment and mild Alzheimer’s disease. Int Clin Psychopharmacol 18:61–71. doi:10.1097/00004850-200303000-00001
PubMed
Article
Google Scholar
Ziegler D, Luft D (2002) Clinical trials for drugs against diabetic neuropathy: can we combine scientific needs with clinical practicalities? Int Rev Neurobiol 50:431–463
PubMed
Article
CAS
Google Scholar
McMackin CJ, Widlansky ME, Hamburg NM et al (2007) Effect of combined treatment with alpha-Lipoic acid and acetyl-l-carnitine on vascular function and blood pressure in patients with coronary artery disease. J Clin Hypertens (Greenwich) 9:249–255
CAS
Google Scholar
Ames BN, Elson-Schwab I, Siler EA (2002) High-dose vitamin therapy stimulates variant enzymes with decreased coenzyme binding affinity (increased K(m)): relevance to genetic disease and polymorphisms. Am J Clin Nutr 75:616–658
PubMed
CAS
Google Scholar
Liu J (2008) The effects and mechanisms of mitochondrial nutrient alpha-lipoic acid on improving age-associated mitochondrial and cognitive dysfunction: an overview. Neurochem Res 33:194–203. doi:10.1007/s11064-007-9403-0
PubMed
Article
CAS
Google Scholar
Keeney PM, Xie J, Capaldi RA, Bennett JP Jr (2006) Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci 26:5256–5264. doi:10.1523/JNEUROSCI.0984-06.2006
PubMed
Article
CAS
Google Scholar
Lenaz G, Fato R, Baracca A, Genoa ML (2004) Mitochondrial quinone reductases: complex I. Methods Enzymol 382:3–20. doi:10.1016/S0076-6879(04)82001-9
PubMed
Article
CAS
Google Scholar
Sun L, Luo C, Long J, Wei D, Liu J (2006) Acrolein is a mitochondrial toxin: effects on respiratory function and enzyme activities in isolated rat liver mitochondria. Mitochondrion 6:136–142. doi:10.1016/j.mito.2006.04.003
PubMed
Article
CAS
Google Scholar
Yarian CS, Rebrin I, Sohal RS (2005) Aconitase and ATP synthase are targets of malondialdehyde modification and undergo an age-related decrease in activity in mouse heart mitochondria. Biochem Biophys Res Commun 330:151–156. doi:10.1016/j.bbrc.2005.02.135
PubMed
Article
CAS
Google Scholar
Smigrodzki R, Parks J, Parker WD (2004) High frequency of mitochondrial complex I mutations in Parkinson’s disease and aging. Neurobiol Aging 25:1273–1281. doi:10.1016/j.neurobiolaging.2004.02.020
PubMed
Article
CAS
Google Scholar
Yoon YS, Lee JH, Hwang SC, Choi KS, Yoon G (2005) TGF beta1 induces prolonged mitochondrial ROS generation through decreased complex I activity with senescent arrest in M1Lu cells. Oncogene 24:1895–1903. doi:10.1038/sj.onc.1208262
PubMed
Article
CAS
Google Scholar
Paradies G, Petrosillo G, Pistolese M, Di Venosa N, Federici A, Ruggiero FM (2004) Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart: involvement of reactive oxygen species and cardiolipin. Circ Res 94:53–59. doi:10.1161/01.RES.0000109416.56608.64
PubMed
Article
CAS
Google Scholar
Liu J, Yeo HC, Doniger SJ, Ames BN (1997) Assay of aldehydes from lipid peroxidation: gas chromatography-mass spectrometry compared to thiobarbituric acid. Anal Biochem 245:161–166. doi:10.1006/abio.1996.9990
PubMed
Article
CAS
Google Scholar
Long J, Wang X, Gao H et al (2006) Malonaldehyde acts as a mitochondrial toxin: inhibitory effects on respiratory function and enzyme activities in isolated rat liver mitochondria. Life Sci 79:1466–1472. doi:10.1016/j.lfs.2006.04.024
PubMed
Article
CAS
Google Scholar
Volobouea LA, Liu J, Suh JH, Ames BN, Miller SS (2005) (R)-alpha-lipoic acid protects retinal pigment epithelial cells from oxidative damage. Invest Ophthalmol Vis Sci 46:4302–4310. doi:10.1167/ios.04-1098
Article
Google Scholar
Packer L, Tritschler HJ, Wessel K (1997) Neuroprotection by the metabolic antioxidant alpha-lipoic acid. Free Radic Biol Med 22:359–378. doi:10.1016/S0891-5849(96)00269-9
PubMed
Article
CAS
Google Scholar
Calabrese , Ravagna A, Colombrita C et al (2005) Acetylcarnitine induces heme oxygenase in rat astrocytes and protects against oxidative stress: involvement of the transcription factor Nrf2. J Neurosci Res 79:509–521. doi:10.1002/jnr.20386
PubMed
Article
CAS
Google Scholar
Liu J, Atamna H, Kuratsune H, Ames BN (2002) Delaying brain mitochondrial decay and aging with mitochondrial antioxidants and metabolites. Ann NY Acad Sci 959:133–166
PubMed
CAS
Google Scholar
Calo LA, Pagnin E, Davis PA et al (2006) Antioxidant effect of l-carnitine and its short chain esters: relevance for the protection from oxidative stress related cardiovascular damage. Int J Cardiol 107:54–60. doi:10.1016/j.ijcard.2005.02.053
PubMed
Article
Google Scholar
Abdul HM, Butterfield DA (2007) Involvement of PI3K/PKG/ERK1/2 signaling pathways in cortical neurons to trigger protection by cotreatment of acetyl-l-carnitine and alpha-lipoic acid against HNE-mediated oxidative stress and neurotoxicity: implications for Alzheimer’s disease. Free Radic Biol Med 42:371–384. doi:10.1016/j.freeradbiomed.2006.11.006
PubMed
Article
Google Scholar
Shen W, Liu K, Tian C et al (2008) R-alpha-Lipoic acid and acetyl-l-carnitine complementarily promote mitochondrial biogenesis in murine 3T3-L1 adipocytes. Diabetologia 51:165–174. doi:10.1007/s00125-007-0852-4
PubMed
Article
CAS
Google Scholar
Shen W, Liu K, Tian C et al (2008) Protective effects of R-alpha-lipoic acid and acetyl-l-carnitine in MIN6 and isolated rat islet cells chronically exposed to oleic acid. J Cell Biochem 104:1232–1243. doi:10.1002/jcb.21701
Google Scholar