Neurochemical Research

, Volume 34, Issue 4, pp 755–763 | Cite as

Mitochondrial Decay in the Brains of Old Rats: Ameliorating Effect of Alpha-Lipoic Acid and Acetyl-l-carnitine

  • Jiangang Long
  • Feng Gao
  • Liqi Tong
  • Carl W. Cotman
  • Bruce N. Ames
  • Jiankang Liu
Original Paper

Abstract

To investigate the mitochondrial decay and oxidative damage resulting from aging, the activities/kinetics of the mitochondrial complexes were examined in the brains of young and old rats as well as in old rats fed R-α-lipoic acid plus acetyl-l-carnitine (LA/ALC). The brain mitochondria of old rats, compared with young rats, had significantly decreased endogenous antioxidants and superoxide dismutase activity; more oxidative damage to lipids and proteins; and decreased activities of complex I, IV and V. Complex I showed a decrease in binding affinity (increase in Km) for substrates. Feeding LA/ALC to old rats partially restored age-associated mitochondrial dysfunction to the levels of the young rats. These results indicate that oxidative mitochondrial decay plays an important role in brain aging and that a combination of nutrients targeting mitochondria, such as LA/ALC, could ameliorate mitochondrial decay through preventing mitochondrial oxidative damage.

Keywords

Binding affinity (KmBrain mitochondria Mitochondrial complex activity Enzyme kinetics Oxidative damage 

References

  1. 1.
    Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495. doi:10.1016/j.cell.2005.02.001 PubMedCrossRefGoogle Scholar
  2. 2.
    Judge S, Jang YM, Smith A, Hagen T, Leeuwenburgh C (2005) Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging. FASEB J 19:419–421PubMedGoogle Scholar
  3. 3.
    Leine RL, Garland D, Oliver CN et al (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478. doi:10.1016/0076-6879(90)86141-H CrossRefGoogle Scholar
  4. 4.
    Ames BN, Suh JH, Liu J (2006) Enzymes lose binding affinity for coenzymes and substrates with age: a strategy for remediation. In: Kaput J (ed) Nutrigenomics: concepts and technologies. Wiley, Hoboken, pp 277–291Google Scholar
  5. 5.
    Naarro A, Boveris A (2004) Rat brain and lier mitochondria develop oxidative stress and lose enzymatic activities on aging. Am J Physiol Regul Integr Comp Physiol 287(5):R1244–R1249. doi:10.1152/ajpregu.00226.2004 Google Scholar
  6. 6.
    Feuers RJ (1998) The effects of dietary restriction on mitochondrial dysfunction in aging. Ann NY Acad Sci 854:192–201. doi:10.1111/j.1749-6632.1998.tb09902.x PubMedCrossRefGoogle Scholar
  7. 7.
    Liu J, Head E, Gharib AM et al (2002) Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-l-carnitine and/or R-alpha-lipoic acid. Proc Natl Acad Sci USA 99:2356–2361. doi:10.1073/pnas.261709299 PubMedCrossRefGoogle Scholar
  8. 8.
    Liu J, Killilea DW, Ames BN (2002) Age-associated mitochondrial oxidative decay: improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-l-carnitine and/or R-alpha-lipoic acid. Proc Natl Acad Sci USA 99:1876–1881. doi:10.1073/pnas.261709098 PubMedCrossRefGoogle Scholar
  9. 9.
    Packer L, Witt EH, Tritschler HJ (1995) Alpha-Lipoic acid as a biological antioxidant. Free Radic Biol Med 19:227–250. doi:10.1016/0891-5849(95)00017-R PubMedCrossRefGoogle Scholar
  10. 10.
    Suh JH, Shenvi SV, Dixon BM et al (2004) Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc Natl Acad Sci USA 101:3381–3386. doi:10.1073/pnas.0400282101 PubMedCrossRefGoogle Scholar
  11. 11.
    Hagen TM, Ingersoll RT, Wehr CM et al (1998) Acetyl-l-carnitine fed to old rats partially restores mitochondrial function and ambulatory activity. Proc Natl Acad Sci USA 95:9562–9566. doi:10.1073/pnas.95.16.9562 PubMedCrossRefGoogle Scholar
  12. 12.
    Alie G, Liu J, Shenk JC et al (2008) Neuronal mitochondrial amelioration by feeding acetyl-l-carnitine and lipoic acid to aged rats. J Cell Mol Med [epub ahead of print]. doi:10.1111/j.1582-4934.2008.00324.x
  13. 13.
    Milgram NW, Araujo JA, Hagen TM, Treadwell B, Ames BN (2007) Acetyl-l-carnitine and alpha-lipoic acid supplementation of aged beagle dogs improves learning in two landmark discrimination tests. FASEB J 21:3756–3762. doi:10.1096/fj.07-8531com PubMedCrossRefGoogle Scholar
  14. 14.
    Montgomery SA, Thal LJ, Amrein R (2003) Meta-analysis of double blind randomized controlled clinical trials of acetyl-l-carnitine versus placebo in the treatment of mild cognitive impairment and mild Alzheimer’s disease. Int Clin Psychopharmacol 18:61–71. doi:10.1097/00004850-200303000-00001 PubMedCrossRefGoogle Scholar
  15. 15.
    Ziegler D, Luft D (2002) Clinical trials for drugs against diabetic neuropathy: can we combine scientific needs with clinical practicalities? Int Rev Neurobiol 50:431–463PubMedCrossRefGoogle Scholar
  16. 16.
    McMackin CJ, Widlansky ME, Hamburg NM et al (2007) Effect of combined treatment with alpha-Lipoic acid and acetyl-l-carnitine on vascular function and blood pressure in patients with coronary artery disease. J Clin Hypertens (Greenwich) 9:249–255Google Scholar
  17. 17.
    Ames BN, Elson-Schwab I, Siler EA (2002) High-dose vitamin therapy stimulates variant enzymes with decreased coenzyme binding affinity (increased K(m)): relevance to genetic disease and polymorphisms. Am J Clin Nutr 75:616–658PubMedGoogle Scholar
  18. 18.
    Liu J (2008) The effects and mechanisms of mitochondrial nutrient alpha-lipoic acid on improving age-associated mitochondrial and cognitive dysfunction: an overview. Neurochem Res 33:194–203. doi:10.1007/s11064-007-9403-0 PubMedCrossRefGoogle Scholar
  19. 19.
    Keeney PM, Xie J, Capaldi RA, Bennett JP Jr (2006) Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci 26:5256–5264. doi:10.1523/JNEUROSCI.0984-06.2006 PubMedCrossRefGoogle Scholar
  20. 20.
    Lenaz G, Fato R, Baracca A, Genoa ML (2004) Mitochondrial quinone reductases: complex I. Methods Enzymol 382:3–20. doi:10.1016/S0076-6879(04)82001-9 PubMedCrossRefGoogle Scholar
  21. 21.
    Sun L, Luo C, Long J, Wei D, Liu J (2006) Acrolein is a mitochondrial toxin: effects on respiratory function and enzyme activities in isolated rat liver mitochondria. Mitochondrion 6:136–142. doi:10.1016/j.mito.2006.04.003 PubMedCrossRefGoogle Scholar
  22. 22.
    Yarian CS, Rebrin I, Sohal RS (2005) Aconitase and ATP synthase are targets of malondialdehyde modification and undergo an age-related decrease in activity in mouse heart mitochondria. Biochem Biophys Res Commun 330:151–156. doi:10.1016/j.bbrc.2005.02.135 PubMedCrossRefGoogle Scholar
  23. 23.
    Smigrodzki R, Parks J, Parker WD (2004) High frequency of mitochondrial complex I mutations in Parkinson’s disease and aging. Neurobiol Aging 25:1273–1281. doi:10.1016/j.neurobiolaging.2004.02.020 PubMedCrossRefGoogle Scholar
  24. 24.
    Yoon YS, Lee JH, Hwang SC, Choi KS, Yoon G (2005) TGF beta1 induces prolonged mitochondrial ROS generation through decreased complex I activity with senescent arrest in M1Lu cells. Oncogene 24:1895–1903. doi:10.1038/sj.onc.1208262 PubMedCrossRefGoogle Scholar
  25. 25.
    Paradies G, Petrosillo G, Pistolese M, Di Venosa N, Federici A, Ruggiero FM (2004) Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart: involvement of reactive oxygen species and cardiolipin. Circ Res 94:53–59. doi:10.1161/01.RES.0000109416.56608.64 PubMedCrossRefGoogle Scholar
  26. 26.
    Liu J, Yeo HC, Doniger SJ, Ames BN (1997) Assay of aldehydes from lipid peroxidation: gas chromatography-mass spectrometry compared to thiobarbituric acid. Anal Biochem 245:161–166. doi:10.1006/abio.1996.9990 PubMedCrossRefGoogle Scholar
  27. 27.
    Long J, Wang X, Gao H et al (2006) Malonaldehyde acts as a mitochondrial toxin: inhibitory effects on respiratory function and enzyme activities in isolated rat liver mitochondria. Life Sci 79:1466–1472. doi:10.1016/j.lfs.2006.04.024 PubMedCrossRefGoogle Scholar
  28. 28.
    Volobouea LA, Liu J, Suh JH, Ames BN, Miller SS (2005) (R)-alpha-lipoic acid protects retinal pigment epithelial cells from oxidative damage. Invest Ophthalmol Vis Sci 46:4302–4310. doi:10.1167/ios.04-1098 CrossRefGoogle Scholar
  29. 29.
    Packer L, Tritschler HJ, Wessel K (1997) Neuroprotection by the metabolic antioxidant alpha-lipoic acid. Free Radic Biol Med 22:359–378. doi:10.1016/S0891-5849(96)00269-9 PubMedCrossRefGoogle Scholar
  30. 30.
    Calabrese , Ravagna A, Colombrita C et al (2005) Acetylcarnitine induces heme oxygenase in rat astrocytes and protects against oxidative stress: involvement of the transcription factor Nrf2. J Neurosci Res 79:509–521. doi:10.1002/jnr.20386 PubMedCrossRefGoogle Scholar
  31. 31.
    Liu J, Atamna H, Kuratsune H, Ames BN (2002) Delaying brain mitochondrial decay and aging with mitochondrial antioxidants and metabolites. Ann NY Acad Sci 959:133–166PubMedGoogle Scholar
  32. 32.
    Calo LA, Pagnin E, Davis PA et al (2006) Antioxidant effect of l-carnitine and its short chain esters: relevance for the protection from oxidative stress related cardiovascular damage. Int J Cardiol 107:54–60. doi:10.1016/j.ijcard.2005.02.053 PubMedCrossRefGoogle Scholar
  33. 33.
    Abdul HM, Butterfield DA (2007) Involvement of PI3K/PKG/ERK1/2 signaling pathways in cortical neurons to trigger protection by cotreatment of acetyl-l-carnitine and alpha-lipoic acid against HNE-mediated oxidative stress and neurotoxicity: implications for Alzheimer’s disease. Free Radic Biol Med 42:371–384. doi:10.1016/j.freeradbiomed.2006.11.006 PubMedCrossRefGoogle Scholar
  34. 34.
    Shen W, Liu K, Tian C et al (2008) R-alpha-Lipoic acid and acetyl-l-carnitine complementarily promote mitochondrial biogenesis in murine 3T3-L1 adipocytes. Diabetologia 51:165–174. doi:10.1007/s00125-007-0852-4 PubMedCrossRefGoogle Scholar
  35. 35.
    Shen W, Liu K, Tian C et al (2008) Protective effects of R-alpha-lipoic acid and acetyl-l-carnitine in MIN6 and isolated rat islet cells chronically exposed to oleic acid. J Cell Biochem 104:1232–1243. doi:10.1002/jcb.21701 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jiangang Long
    • 1
    • 2
  • Feng Gao
    • 2
  • Liqi Tong
    • 1
  • Carl W. Cotman
    • 1
  • Bruce N. Ames
    • 2
  • Jiankang Liu
    • 1
    • 3
  1. 1.Institute for Brain Aging and DementiaUniversity of CaliforniaIrvineUSA
  2. 2.Children’s Hospital Oakland Research InstituteOaklandUSA
  3. 3.Graduate Center for ToxicologyUniversity of Kentucky College of MedicineLexingtonUSA

Personalised recommendations