Neurochemical Research

, Volume 34, Issue 5, pp 942–951 | Cite as

Neuroprotection by NGF and BDNF Against Neurotoxin-Exerted Apoptotic Death in Neural Stem Cells Are Mediated Through Trk Receptors, Activating PI3-Kinase and MAPK Pathways

OriginalPaper

Abstract

Neural stem cells (NSC) undergo apoptotic cell death during development of nervous system and in adult. However, little is known about the biochemical regulation of neuroprotection by neurotrophin in these cells. In this report, we demonstrate that Staurosporine (STS) and Etoposide (ETS) induced apoptotic cell death of NSC by a mechanism requiring Caspase 3 activation, poly (ADP-ribose) polymerase and Lamin A/C cleavage. Although C17.2 cells revealed higher mRNA level of p75 neurotrophin receptor (p75NTR) compared with TrkA or TrkB receptor, neuroprotective effect of both nerve growth factor (NGF) and brain-derived growth factor (BDNF) mediated through the activation of tropomyosin receptor kinase (Trk) receptors. Moreover, both NGF and BDNF induced the activation of the phosphatidylinositide 3 kinase (PI3K)/Akt and the mitogen-activated protein kinase (MAPK) pathway. Inhibition of Trk receptor by K252a reduced PARP cleavage as well as cell viability, whereas inhibition of p75NTR did not affect the effect of neurotrophin on neurotoxic insults. Thus our studies indicate that the protective effect of NGF and BDNF in NSC against apoptotic stimuli is mediated by the PI3K/Akt and MAPK signaling pathway via Trk receptors.

Keywords

Neural stem cells Staurosporine Etoposide Apoptosis BDNF NGF 

References

  1. 1.
    Kuan C-Y, Roth KA, Flavell RA et al (2000) Mechanisms of programmed cell death in the developing brain. Trends Neurosci 23:291–297. doi:10.1016/S0166-2236(00)01581-2 CrossRefPubMedGoogle Scholar
  2. 2.
    Snyder EY, Deitcher DL, Walsh C et al (1992) Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68:33–51. doi:10.1016/0092-8674(92)90204-P CrossRefPubMedGoogle Scholar
  3. 3.
    Snyder EY, Yoon C, Flax JD et al (1997) Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. Proc Natl Acad Sci USA 94:11663–11668. doi:10.1073/pnas.94.21.11663 CrossRefPubMedGoogle Scholar
  4. 4.
    Homma S, Yaginuma H, Oppenheim RW (1994) Programmed cell death during the earliest stages of spinal cord development in the chick embryo: a possible means of early phenotypic selection. J Comp Neurol 345:377–395. doi:10.1002/cne.903450305 CrossRefPubMedGoogle Scholar
  5. 5.
    Slack RS, Skerjanc IS, Lach B et al (1995) Cells differentiating into neuroectoderm undergo apoptosis in the absence of functional retinoblastoma family proteins. J Cell Biol 129:779–788. doi:10.1083/jcb.129.3.779 CrossRefPubMedGoogle Scholar
  6. 6.
    Hagedorn L, Floris J, Suter U et al (2000) Autonomic neurogenesis and apoptosis are alternative fates of progenitor cell communities induced by TGFbeta. Dev Biol 228:57–72. doi:10.1006/dbio.2000.9936 CrossRefPubMedGoogle Scholar
  7. 7.
    Levison SW, Rothstein RP, Brazel CY et al (2000) Selective apoptosis within the rat subependymal zone: a plausible mechanism for determining which lineages develop from neural stem cells. Dev Neurosci 22:106–115. doi:10.1159/000017432 CrossRefPubMedGoogle Scholar
  8. 8.
    Tamm C, Robertson JD, Sleeper E et al (2004) Differential regulation of the mitochondrial and death receptor pathways in neural stem cells. Eur J NeuroSci 19:2613–2621. doi:10.1111/j.0953-816X.2004.03391.x CrossRefPubMedGoogle Scholar
  9. 9.
    Cheng A, Chan SL, Milhavet O et al (2001) p38 MAP kinase mediates nitric oxide-induced apoptosis of neural progenitor cells. J Biol Chem 276:43320–43327. doi:10.1074/jbc.M107698200 CrossRefPubMedGoogle Scholar
  10. 10.
    Tamm C, Sabri F, Ceccatelli S (2008) Mitochondrial-mediated apoptosis in neural stem cells exposed to manganese. Toxicol Sci 101:310–320. doi:10.1093/toxsci/kfm267 CrossRefPubMedGoogle Scholar
  11. 11.
    Hennigan A, O’Callaghan RM, Kelly AM (2007) Neurotrophins and their receptors: roles in plasticity, neurodegeneration and neuroprotection. Biochem Soc Trans 35:424–427. doi:10.1042/BST0350424 CrossRefPubMedGoogle Scholar
  12. 12.
    Rodriguez-Tebar A, Dechant G, Barde YA (1990) Binding of brain-derived neurotrophic factor to the nerve growth factor receptor. Neuron 4:487–492. doi:10.1016/0896-6273(90)90107-Q CrossRefPubMedGoogle Scholar
  13. 13.
    Lindsay RM, Thoenen H, Barde YA (1985) Placode and neural crest-derived sensory neurons are responsive at early developmental stages to brain-derived neurotrophic factor. Dev Biol 112:319–328. doi:10.1016/0012-1606(85)90402-6 CrossRefPubMedGoogle Scholar
  14. 14.
    Sobue G, Yamamoto M, Doyu M et al (1998) Expression of mRNAs for neurotrophins (NGF, BDNF, and NT-3) and their receptors (p75NGFR, trk, trkB, and trkC) in human peripheral neuropathies. Neurochem Res 23:821–829. doi:10.1023/A:1022434209787 CrossRefPubMedGoogle Scholar
  15. 15.
    Tucker KL, Meyer M, Barde YA (2001) Neurotrophins are required for nerve growth during development. Nat Neurosci 4:29–37. doi:10.1038/82868 CrossRefPubMedGoogle Scholar
  16. 16.
    Sofroniew MV, Howe CL, Mobley WC (2001) Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 24:1217–1281. doi:10.1146/annurev.neuro.24.1.1217 CrossRefPubMedGoogle Scholar
  17. 17.
    Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736. doi:10.1146/annurev.neuro.24.1.677 CrossRefPubMedGoogle Scholar
  18. 18.
    Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–642. doi:10.1146/annurev.biochem.72.121801.161629 CrossRefPubMedGoogle Scholar
  19. 19.
    Snider WD (1994) Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell 77:627–638. doi:10.1016/0092-8674(94)90048-5 CrossRefPubMedGoogle Scholar
  20. 20.
    Meakin SO, Shooter EM (1992) The nerve growth factor family of receptors. Trends Neurosci 15:323–331. doi:10.1016/0166-2236(92)90047-C CrossRefPubMedGoogle Scholar
  21. 21.
    Carpenter CL, Auger KR, Chanudhuri M et al (1993) Phosphoinositide 3-kinase is activated by phosphopeptides that bind to the SH2 domains of the 85-kDa subunit. J Biol Chem 268:9478–9483PubMedGoogle Scholar
  22. 22.
    Sadowski HB, Shuai K, Darnell JE Jr et al (1993) A common nuclear signal transduction pathway activated by growth factor and cytokine receptors. Science 261:1739–1744. doi:10.1126/science.8397445 CrossRefPubMedGoogle Scholar
  23. 23.
    Aronheim A, Engelberg D, Li N et al (1994) Membrane targeting of the nucleotide exchange factor Sos is sufficient for activating the Ras signaling pathway. Cell 78:949–961. doi:10.1016/0092-8674(94)90271-2 CrossRefPubMedGoogle Scholar
  24. 24.
    Rodriguez-Viciana P, Warne PH, Dhand R et al (1994) Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370:527–532CrossRefPubMedGoogle Scholar
  25. 25.
    Cowley S, Paterson H, Kemp P et al (1994) Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77:841–852. doi:10.1016/0092-8674(94)90133-3 CrossRefPubMedGoogle Scholar
  26. 26.
    Ye K, Hurt KJ, Wu FY et al (2000) Pike. A nuclear gtpase that enhances PI3kinase activity and is regulated by protein 4.1 N. Cell 103:919–930CrossRefPubMedGoogle Scholar
  27. 27.
    Datta SR, Dudek H, Tao X et al (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241. doi:10.1016/S0092-8674(00)80405-5 CrossRefPubMedGoogle Scholar
  28. 28.
    del Peso L, Gonzalez-Garcia M, Page C et al (1997) Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278:687–689CrossRefPubMedGoogle Scholar
  29. 29.
    Cardone MH, Roy N, Stennicke HR et al (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321. doi:10.1126/science.282.5392.1318 CrossRefPubMedGoogle Scholar
  30. 30.
    Biggs WHIII, Meisenhelder J, Hunter T et al (1999) Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci USA 96:7421–7426. doi:10.1073/pnas.96.13.7421 CrossRefPubMedGoogle Scholar
  31. 31.
    Brunet A, Bonni A, Zigmond MJ et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868. doi:10.1016/S0092-8674(00)80595-4 CrossRefPubMedGoogle Scholar
  32. 32.
    Kops GJ, de Ruiter ND, De Vries-Smits AM et al (1999) Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398:630–634CrossRefPubMedGoogle Scholar
  33. 33.
    Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299. doi:10.1016/0092-8674(95)90513-8 CrossRefPubMedGoogle Scholar
  34. 34.
    Yamaguchi A, Tamatani M, Matsuzaki H et al (2001) Akt activation protects hippocampal neurons from apoptosis by inhibiting transcriptional activity of p53. J Biol Chem 276:5256–5264. doi:10.1074/jbc.M008552200 CrossRefPubMedGoogle Scholar
  35. 35.
    Ahn JY, Liu X, Liu Z et al (2006) Nuclear Akt associates with PKC-phosphorylated Ebp1, preventing DNA fragmentation by inhibition of caspase-activated DNase. EMBO J 25:2083–2095. doi:10.1038/sj.emboj.7601111 CrossRefPubMedGoogle Scholar
  36. 36.
    Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179–185. doi:10.1016/0092-8674(95)90401-8 CrossRefPubMedGoogle Scholar
  37. 37.
    Robinson MJ, Cobb MH (1997) Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 9:180–186. doi:10.1016/S0955-0674(97)80061-0 CrossRefPubMedGoogle Scholar
  38. 38.
    Butler AA, Yakar S, Gewolb IH et al (1998) Insulin-like growth factor-I receptor signal transduction: at the interface between physiology and cell biology. Comp Biochem Physiol B Biochem Mol Biol 121:19–26. doi:10.1016/S0305-0491(98)10106-2 CrossRefPubMedGoogle Scholar
  39. 39.
    Bonni A, Brunet A, West AE et al (1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286:1358–1362. doi:10.1126/science.286.5443.1358 CrossRefPubMedGoogle Scholar
  40. 40.
    Niles LP, Armstrong KJ, Rincon Castro LM et al (2004) Neural stem cells express melatonin receptors and neurotrophic factors: colocalization of the MT1 receptor with neuronal and glial markers. BMC Neurosci 5:41. doi:10.1186/1471-2202-5-41 CrossRefPubMedGoogle Scholar
  41. 41.
    Lu P, Jones LL, Snyder EY et al (2003) Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol 181:115–129. doi:10.1016/S0014-4886(03)00037-2 CrossRefPubMedGoogle Scholar
  42. 42.
    Soppet D, Escandon E, Maragos J et al (1991) The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor. Cell 65:895–903. doi:10.1016/0092-8674(91)90396-G CrossRefPubMedGoogle Scholar
  43. 43.
    Bai O, Wei Z, Lu W et al (2002) Protective effects of atypical antipsychotic drugs on PC12 cells after serum withdrawal. J Neurosci Res 69:278–283. doi:10.1002/jnr.10290 CrossRefPubMedGoogle Scholar
  44. 44.
    Perez-Pinera P, Hernandez T, Garcia-Suarez O et al (2007) The Trk tyrosine kinase inhibitor K252a regulates growth of lung adenocarcinomas. Mol Cell Biochem 295:19–26. doi:10.1007/s11010-006-9267-7 CrossRefPubMedGoogle Scholar
  45. 45.
    Young D, Lawlor PA, Leone P et al (1999) Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective. Nat Med 5:448–453. doi:10.1038/7449 CrossRefPubMedGoogle Scholar
  46. 46.
    Biebl M, Cooper CM, Winkler J et al (2000) Analysis of neurogenesis and programmed cell death reveals a self-renewing capacity in the adult rat brain. Neurosci Lett 291:17–20. doi:10.1016/S0304-3940(00)01368-9 CrossRefPubMedGoogle Scholar
  47. 47.
    Lee SM, Tole S, Grove E et al (2000) A local Wnt-3a signal is required for development of the mammalian hippocampus. Development 127:457–467PubMedGoogle Scholar
  48. 48.
    Zheng WH, Kar S, Quirion R (2002) Insulin-like growth factor-1-induced phosphorylation of transcription factor FKHRL1 is mediated by phosphatidylinositol 3-kinase/Akt kinase and role of this pathway in insulin-like growth factor-1-induced survival of cultured hippocampal neurons. Mol Pharmacol 62:225–233. doi:10.1124/mol.62.2.225 CrossRefPubMedGoogle Scholar
  49. 49.
    Yao R, Cooper GM (1995) Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267:2003–2006. doi:10.1126/science.7701324 CrossRefPubMedGoogle Scholar
  50. 50.
    Skaper SD, Floreani M, Negro A et al (1998) Neurotrophins rescue cerebellar granule neurons from oxidative stress-mediated apoptotic death: selective involvement of phosphatidylinositol 3-kinase and the mitogen-activated protein kinase pathway. J Neurochem 70:1859–1868PubMedCrossRefGoogle Scholar
  51. 51.
    Hetman M, Kanning K, Cavanaugh JE et al (1999) Neuroprotection by brain-derived neurotrophic factor is mediated by extracellular signal-regulated kinase and phosphatidylinositol 3-kinase. J Biol Chem 274:22569–22580. doi:10.1074/jbc.274.32.22569 CrossRefPubMedGoogle Scholar
  52. 52.
    Crowder RJ, Freeman RS (1998) Phosphatidylinositol 3-kinase and Akt protein kinase are necessary and sufficient for the survival of nerve growth factor-dependent sympathetic neurons. J Neurosci 18:2933–2943PubMedGoogle Scholar
  53. 53.
    Mazzoni IE, Said FA, Aloyz R et al (1999) Ras regulates sympathetic neuron survival by suppressing the p53-mediated cell death pathway. J Neurosci 19:9716–9727PubMedGoogle Scholar
  54. 54.
    Xue L, Murray JH, Tolkovsky AM (2000) The Ras/phosphatidylinositol 3-kinase and Ras/ERK pathways function as independent survival modules each of which inhibits a distinct apoptotic signaling pathway in sympathetic neurons. J Biol Chem 275:8817–8824. doi:10.1074/jbc.275.12.8817 CrossRefPubMedGoogle Scholar
  55. 55.
    Klesse LJ, Parada LF (1998) p21 Ras and phosphatidylinositol-3 kinase are required for survival of wild-type and NF1 mutant sensory neurons. J Neurosci 18:10420–10428PubMedGoogle Scholar
  56. 56.
    Dolcet X, Egea J, Soler RM et al (1999) Activation of phosphatidylinositol 3-kinase, but not extracellular-regulated kinases, is necessary to mediate brain-derived neurotrophic factor-induced motoneuron survival. J Neurochem 73:521–531. doi:10.1046/j.1471-4159.1999.0730521.x CrossRefPubMedGoogle Scholar
  57. 57.
    Almeida RD, Manadas BJ, Melo CV et al (2005) Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ 12:1329–1343. doi:10.1038/sj.cdd.4401662 CrossRefPubMedGoogle Scholar
  58. 58.
    Chang SH, Poser S, Xia Z (2004) A novel role for serum response factor in neuronal survival. J Neurosci 24:2277–2285CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Molecular Cell Biology, Samsung Biomedical Research InstituteSungkyunkwan University School of MedicineSuwonSouth Korea
  2. 2.Department of Anatomy, Samsung Biomedical Research InstituteSungkyunkwan University School of MedicineSuwonSouth Korea

Personalised recommendations