Skip to main content
Log in

Effects of Chronic Restraint Stress and Estradiol Replacement on Glutamate Release and Uptake in the Spinal Cord from Ovariectomized Female Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glutamate is an excitatory neurotransmitter involved in neuronal plasticity and neurotoxicity. Chronic stress produces several physiological changes on the spinal cord, many of them presenting sex-specific differences, which probably involve glutamatergic system alterations. The aim of the present study was to verify possible effects of exposure to chronic restraint stress and 17β-estradiol replacement on [3H]-glutamate release and uptake in spinal cord synaptosomes of ovariectomized (OVX) rats. Female rats were subjected to OVX, and half of the animals received estradiol replacement. Animals were subdivided in controls and chronically stressed. Restraint stress or estradiol had no effect on [3H]-glutamate release. The chronic restraint stress promoted a decrease and 17β-estradiol induced an increase on [3H]-glutamate uptake, but the uptake observed in the restraint stress +17β-estradiol group was similar to control. Furthermore, 17β-estradiol treatment caused a significant increase in the immunocontent of the three glutamate transporters present in spinal cord. Restraint stress had no effect on the expression of these transporters, but prevented the 17β-estradiol effect. We suggest that changes in the glutamatergic system are likely to take part in the mechanisms involved in spinal cord plasticity following repeated stress exposure, and that 17β-estradiol levels may affect chronic stress effects in this structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Viau V (2002) Functional cross-talk between the hypothalamic-pituitary-gonadal and -adrenal axes. J Neuroendocrinol 14:506–513. doi:10.1046/j.1365-2826.2002.00798.x

    Article  PubMed  CAS  Google Scholar 

  2. Bowmann RE (2005) Stress-induced changes in spatial memory are sexually differentiated and vary across the lifespan. J Neuroendocrinol 17:526–535. doi:10.1111/j.1365-2826.2005.01335.x

    Article  CAS  Google Scholar 

  3. Gamaro GD, Xavier MH, Denardin JD et al (1998) The effects of acute and repeated restraint stress on the nociceptive response in rats. Physiol Behav 63:693–697. doi:10.1016/S0031-9384(97)00520-9

    Article  PubMed  CAS  Google Scholar 

  4. Fontella FU, Bruno AN, Balk RS et al (2005) Repeated stress effects on nociception and on ectonucleotidase activities in spinal cord synaptosomes of female rats. Physiol Behav 85:213–219. doi:10.1016/j.physbeh.2005.04.010

    Article  PubMed  CAS  Google Scholar 

  5. Tabajara AS, Fontella FU, Torres IL et al (2003) Gender differences in oxidative stress in spinal cord of rats submitted to repeated restraint stress. Neurochem Res 28:1315–1322. doi:10.1023/A:1024932028999

    Article  PubMed  CAS  Google Scholar 

  6. Yoshimura M, Jessell T (1990) Amino acid-mediated EPSPs at primary afferent synapses with substantia gelatinosa neurones in the rat spinal cord. J Physiol 430:315–335

    PubMed  CAS  Google Scholar 

  7. Malmberg AB, Yaksh TL (1995) Cyclooxygenase inhibition and the spinal release of prostaglandin E2 and amino acids evoked by paw formalin injection: a microdialysis study in unanesthetized rats. J Neurosci 15:2768–2776

    PubMed  CAS  Google Scholar 

  8. Dickenson AH, Chapman V, Green GM (1997) The pharmacology of excitatory and inhibitory amino acid-mediated events in the transmission and modulation of pain in the spinal cord. Gen Pharmacol 28:633–638. doi:10.1016/S0306-3623(96)00359-X

    PubMed  CAS  Google Scholar 

  9. Sluka KA, Willis WD (1998) Increased spinal release of excitatory amino acids following intradermal injection of capsaicin is reduced by a protein kinase G inhibitor. Brain Res 798:281–286. doi:10.1016/S0006-8993(98)00428-4

    Article  PubMed  CAS  Google Scholar 

  10. Vetter G, Geisslinger G, Tegeder I (2001) Release of glutamate, nitric oxide and prostaglandin E2 and metabolic activity in the spinal cord of rats following peripheral nociceptive stimulation. Pain 92:213–218. doi:10.1016/S0304-3959(01)00258-5

    Article  PubMed  CAS  Google Scholar 

  11. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105. doi:10.1016/S0301-0082(00)00067-8

    Article  PubMed  CAS  Google Scholar 

  12. Liu D, Xu GY, Pan E et al (1999) Neurotoxicity of glutamate at the concentration released upon spinal cord injury. Neuroscience 93:1383–1389. doi:10.1016/S0306-4522(99)00278-X

    Article  PubMed  CAS  Google Scholar 

  13. Tao F, Liaw WJ, Zhang B et al (2004) Evidence of neuronal excitatory amino acid carrier 1 expression in rat dorsal root ganglion neurons and their central terminals. Neuroscience 123:1045–1051. doi:10.1016/j.neuroscience.2003.11.026

    Article  PubMed  CAS  Google Scholar 

  14. Liaw WJ, Stephens RL Jr, Binns BC et al (2005) Spinal glutamate uptake is critical for maintaining normal sensory transmission in rat spinal cord. Pain 115:60–70. doi:10.1016/j.pain.2005.02.006

    Article  PubMed  CAS  Google Scholar 

  15. Attwell D (2000) Brain uptake of glutamate: food for thought. J Nutr 130:1023–1025

    Google Scholar 

  16. Rothstein JD, Martin L, Levey AI et al (1994) Localization of neuronal and glial glutamate transporters. Neuron 13:713–725. doi:10.1016/0896-6273(94)90038-8

    Article  PubMed  CAS  Google Scholar 

  17. Niederberger E, Schmidtko A, Rothstein JD et al (2003) Modulation of spinal nociceptive processing through the glutamate transporter GLT-1. Neuroscience 116:81–87. doi:10.1016/S0306-4522(02)00547-X

    Article  PubMed  CAS  Google Scholar 

  18. Niederberger E, Schmidtko A, Coste O et al (2006) The glutamate transporter GLAST is involved in spinal nociceptive processing. Biochem Biophys Res Commun 346:393–399. doi:10.1016/j.bbrc.2006.05.163

    Article  PubMed  CAS  Google Scholar 

  19. Vera-Portocarrero LP, Mills CD, Ye Z et al (2002) Rapid changes in expression of glutamate transporters after spinal cord injury. Brain Res 927:104–110. doi:10.1016/S0006-8993(01)03329-7

    Article  PubMed  CAS  Google Scholar 

  20. Lortet S, Samuel D, Had-Aissouni L et al (1999) Effects of PKA and PKC modulators on high affinity glutamate uptake in primary neuronal cell cultures from rat cerebral cortex. Neuropharmacology 38:395–402. doi:10.1016/S0028-3908(98)00193-2

    Article  PubMed  CAS  Google Scholar 

  21. Volterra A, Trotti D, Tromba C et al (1994) Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J Neurosci 14:2924–2932

    PubMed  CAS  Google Scholar 

  22. Trotti D, Rizzini BL, Rossi D et al (1997) Neuronal and glial glutamate transporters possess an SH-based redox regulatory mechanism. Eur J NeuroSci 9:1236–1243. doi:10.1111/j.1460-9568.1997.tb01478.x

    Article  PubMed  CAS  Google Scholar 

  23. Trotti D, Danbolt NC, Volterra A et al (1998) Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative and excitotoxic neurodegeneration? Trends Pharmacol Sci 19:328–334. doi:10.1016/S0165-6147(98)01230-9

    Article  PubMed  CAS  Google Scholar 

  24. Lee TS, McEwen BS (2001) Neurotrophic and neuroprotective actions of estrogens and their therapeutic implications. Annu Rev Pharmacol Toxicol 41:569–591. doi:10.1146/annurev.pharmtox.41.1.569

    Article  PubMed  CAS  Google Scholar 

  25. McEwen BS (2001) Invited review: estrogens effects on the brain: multiple sites and molecular mechanisms. J Appl Physiol 91:2785–2801

    PubMed  CAS  Google Scholar 

  26. Blanchet PJ, Fang J, Hyland K (1999) Short-term effects of high-dose 17beta-estradiol in postmenopausal PD patients: a crossover study. Neurology 53:91–95

    PubMed  CAS  Google Scholar 

  27. Cimarosti H, O’Shea RD, Jones NM et al (2006) The effects of estradiol on estrogen receptor and glutamate transporter expression in organotypic hippocampal cultures exposed to oxygen–glucose deprivation. Neurochem Res 31:483–490. doi:10.1007/s11064-006-9043-9

    Article  PubMed  CAS  Google Scholar 

  28. Prediger ME, Gamaro GD, Crema LM et al (2004) Estradiol protects against oxidative stress induced by chronic variate stress. Neurochem Res 29:1923–1930. doi:10.1023/B:NERE.0000042219.98446.e7

    Article  PubMed  CAS  Google Scholar 

  29. Dunkley PR, Heath JW, Harrison SM et al (1988) A rapid Percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: homogeneity and morphology of subcellular fractions. Brain Res 441:59–71. doi:10.1016/0006-8993(88)91383-2

    Article  PubMed  CAS  Google Scholar 

  30. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the folin-phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  31. Leal MB, Emanuelli T, Porciuncula LD et al (2001) Ibogaine alters synaptosomal and glial glutamate release and uptake. NeuroReport 12:263–267. doi:10.1097/00001756-200102120-00017

    Article  PubMed  CAS  Google Scholar 

  32. Migues PV, Leal RB, Mantovani M et al (1999) Synaptosomal glutamate release induced by the fraction Bc2 from the venom of the sea anemone Bunodosoma caissarum. NeuroReport 10:67–70. doi:10.1097/00001756-199901180-00013

    Article  PubMed  CAS  Google Scholar 

  33. Fontella FU, Vendite DA, Tabajara AS et al (2004) Repeated restraint stress alters hippocampal glutamate uptake and release in the rat. Neurochem Res 29:1703–1709. doi:10.1023/B:NERE.0000035805.46592.6c

    Article  PubMed  CAS  Google Scholar 

  34. Queen SA, Kesslak JP, Bridges RJ (2006) Regional distribution of sodium-dependent excitatory amino acid transporters in rat spinal cord. J Spinal Cord Med 30:263–271

    Google Scholar 

  35. Nakamura Y, Kubo H, Kataoka K (1994) Uptake of transmitter amino acids by glial plasmalemmal vesicles from different regions of rat central nervous system. Neurochem Res 19:1145–1150. doi:10.1007/BF00965148

    Article  PubMed  CAS  Google Scholar 

  36. Phillis JW, Wu PH (1982) The effect of various centrally active drugs on adenosine uptake by the central nervous system. Comp Biochem Physiol 72:179–187

    CAS  Google Scholar 

  37. Lovick TA (2008) GABA in the female brain – Oestrous cycle-related changes in GABAergic function in the periaqueductal grey matter. Pharmacol Biochem Behav 90:43–50. doi:10.1016/j.pbb.2007.12.014

    Article  PubMed  CAS  Google Scholar 

  38. Nicholls DG (1989) Release of glutamate, aspartate, and gamma-aminobutyric acid from isolated nerve terminals. J Neurochem 52:331–341. doi:10.1111/j.1471-4159.1989.tb09126.x

    Article  PubMed  CAS  Google Scholar 

  39. Turner TJ, Dunlap K (1995) Prolonged time course of glutamate release from nerve terminals: relationship between stimulus duration and the secretory event. J Neurochem 64:2022–2033

    Article  PubMed  CAS  Google Scholar 

  40. Tavares RG, Tasca CI, Santos CE et al (2002) Quinolinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes. Neurochem Int 40:621–627. doi:10.1016/S0197-0186(01)00133-4

    Article  PubMed  CAS  Google Scholar 

  41. Raiteri L, Zappettini S, Milanese M et al (2007) Mechanisms of glutamate release elicited in rat cerebrocortical nerve endings by ‘pathologically’ elevated extraterminal K+ concentrations. J Neurochem 103:952–961. doi:10.1111/j.1471-4159.2007.04784.x

    Article  PubMed  CAS  Google Scholar 

  42. Suchak SK, Baloyianni NV, Perkinton MS et al (2003) The ‘glial’ glutamate transporter, EAAT2 (Glt-1) accounts for high affinity glutamate uptake into adult rodent nerve endings. J Neurochem 84:522–532. doi:10.1046/j.1471-4159.2003.01553.x

    Article  PubMed  CAS  Google Scholar 

  43. Bridges RJ, Kavanaugh MP, Chamberlin AR (1999) A pharmacological review of competitive inhibitors and substrates of high-affinity, sodium-dependent glutamate transport in the central nervous system. Curr Pharm Des 5:363–379

    PubMed  CAS  Google Scholar 

  44. Madrigal JL, Caso JR, de Cristobal J et al (2003) Effect of subacute and chronic immobilisation stress on the outcome of permanent focal cerebral ischaemia in rats. Brain Res 979:137–145. doi:10.1016/S0006-8993(03)02892-0

    Article  PubMed  CAS  Google Scholar 

  45. Weng HR, Chen JH, Cata JP (2006) Inhibition of glutamate uptake in the spinal cord induces hyperalgesia and increased responses of spinal dorsal horn neurons to peripheral afferent stimulation. Neuroscience 138:1351–1360. doi:10.1016/j.neuroscience.2005.11.061

    Article  PubMed  CAS  Google Scholar 

  46. Hirata A, Nakamura R, Kwak S et al (1997) AMPA receptor-mediated slow neuronal death in the rat spinal cord induced by long-term blockade of glutamate transporters with THA. Brain Res 771:37–44. doi:10.1016/S0006-8993(97)00709-9

    Article  PubMed  CAS  Google Scholar 

  47. Madrigal JL, Olivenza R, Moro MA et al (2001) Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain. Neuropsychopharmacology 24:420–429. doi:10.1016/S0893-133X(00)00208-6

    Article  PubMed  CAS  Google Scholar 

  48. Claiborne J, Nag S, Mokha SS (2006) Activation of opioid receptor like-1 receptor in the spinal cord produces sex-specific antinociception in the rat: estrogen attenuates antinociception in the female, whereas testosterone is required for the expression of antinociception in the male. J Neurosci 26:13048–13053. doi:10.1523/JNEUROSCI.4783-06.2006

    Article  PubMed  CAS  Google Scholar 

  49. Craft RM, Mogil JS, Aloisi AM (2004) Sex differences in pain and analgesia: the role of gonadal hormones. Eur J Pain 8:397–411. doi:10.1016/j.ejpain.2004.01.003

    Article  PubMed  CAS  Google Scholar 

  50. Keller JN, Germeyer A, Begley JG et al (1997) 17-beta-Estradiol attenuates oxidative impairment of synaptic Na+/K+-ATPase activity, glucose transport, and glutamate transport induced by amyloid beta-peptide and iron. J Neurosci Res 50:522–530. doi:10.1002/(SICI)1097-4547(19971115)50:4<522::AID-JNR3>3.0.CO;2-G

    Article  PubMed  CAS  Google Scholar 

  51. Pawlak J, Brito V, Küppers E et al (2005) Regulation of glutamate transporter GLAST and GLT-1 expression in astrocytes by estrogen. Brain Res Mol Brain Res 29(138):1–7. doi:10.1016/j.molbrainres.2004.10.043

    Article  CAS  Google Scholar 

  52. Sato K, Matsuki N, Ohno Y et al (2003) Estrogen inhibit l-glutamate uptake activity of astrocytes via membrane estrogen receptor alpha. J Neurochem 86:1498–1505. doi:10.1046/j.1471-4159.2003.01953.x

    Article  PubMed  CAS  Google Scholar 

  53. Reagan LP, Rosell DR, Wood GE et al (2004) Chronic restraint stress up-regulates GLT-1 mRNA and protein expression in the rat hippocampus: reversal by tianeptine. Proc Natl Acad Sci USA 101:2179–2184. doi:10.1073/pnas.0307294101

    Article  PubMed  CAS  Google Scholar 

  54. Autry AE, Grillo CA, Piroli GG et al (2006) Glucocorticoid regulation of GLT-1 glutamate transporter isoform expression in the rat hippocampus. Neuroendocrinology 83:371–379. doi:10.1159/000096092

    Article  PubMed  CAS  Google Scholar 

  55. Zschocke J, Bayatti N, Clement AM et al (2005) Differential promotion of glutamate transporter expression and function by glucocorticoids in astrocytes from various brain regions. J Biol Chem 280:34924–34932. doi:10.1074/jbc.M502581200

    Article  PubMed  CAS  Google Scholar 

  56. Wen ZH, Wu GJ, Chang YC et al (2005) Dexamethasone modulates the development of morphine tolerance and expression of glutamate transporters in rats. Neuroscience 133:807–817. doi:10.1016/j.neuroscience.2005.03.015

    Article  PubMed  CAS  Google Scholar 

  57. Wu GJ, Chen WF, Sung CS et al (2007) Preventive effects of intrathecal methylprednisolone administration on spinal cord ischemia in rats: the role of excitatory amino acid metabolizing systems. Neuroscience 147:294–303. doi:10.1016/j.neuroscience.2007.04.040

    Article  PubMed  CAS  Google Scholar 

  58. Burgess LH, Handa RJ (1992) Chronic estrogen-induced alterations in adrenocorticotropin and corticosterone secretion, and glucocorticoid receptor-mediated functions in female rats. Endocrinology 131:1261–1269. doi:10.1210/en.131.3.1261

    Article  PubMed  CAS  Google Scholar 

  59. Carey MP, Deterd CH, de Koning J et al (1995) The influence of ovarian steroids on hypothalamic–pituitary–adrenal regulation in the female rat. J Endocrinol 144:311–321

    Article  PubMed  CAS  Google Scholar 

  60. Dayas CV, Xu Y, Buller KM et al (2000) Effects of chronic oestrogen replacement on stress-induced activation of hypothalamic–pituitary–adrenal axis control pathways. J Neuroendocrinol 12:784–794. doi:10.1046/j.1365-2826.2000.00527.x

    Article  PubMed  CAS  Google Scholar 

  61. McCormick CM, Linkroum W, Sallinen BJ et al (2002) Peripheral and central sex steroids have differential effects on the HPA axis of male and female rats. Stress 5:235–247. doi:10.1080/1025389021000061165

    Article  PubMed  CAS  Google Scholar 

  62. Lunga P, Herbert J (2004) 17B-Oestradiol modulates glucocorticoid, neural and behavioural adaptations to repeated restraint stress in female rats. J Neuroendocrinol 16:776–785. doi:10.1111/j.1365-2826.2004.01234.x

    Article  PubMed  CAS  Google Scholar 

  63. Walf AA, Frye CA (2005) Antianxiety and antidepressive behavior produced by physiological estradiol regimen may be modulated by hypothalamic–pituitary–adrenal axis activity. Neuropsychopharmacology 30:1288–1301. doi:10.1038/sj.npp.1300713

    Article  PubMed  CAS  Google Scholar 

  64. Uht RM, Anderson CM, Webb P et al (1997) Transcriptional activities of estrogen and glucocorticoid receptors functionally integrated at the AP-1 response element. Endocrinology 138:2900–2908. doi:10.1210/en.138.7.2900

    Article  PubMed  CAS  Google Scholar 

  65. Kinyamu HK, Archer TK (2003) Estrogen receptor-dependent proteasomal degradation of the glucocorticoid receptor is coupled to an increase in mdm2 protein expression. Mol Cell Biol 3:5867–5881. doi:10.1128/MCB.23.16.5867-5881.2003

    Article  CAS  Google Scholar 

  66. Sheng Z, Yanai A, Fujinaga R et al (2003) Gonadal and adrenal effects on the glucocorticoid receptor in the rat hippocampus, with special reference to regulation by estrogen from an immunohistochemical view-point. Neurosci Res 46:205–218

    PubMed  CAS  Google Scholar 

  67. Wang S, Lim G, Yang L (2006) Downregulation of spinal glutamate transporter EAAC1 following nerve injury is regulated by central glucocorticoid receptors in rats. Pain 120:78–85. doi:10.1016/j.pain.2005.10.015

    Article  PubMed  CAS  Google Scholar 

  68. Fillenz M (1995) Physiological release of excitatory amino acids. Behav Brain Res 71:51–67. doi:10.1016/0166-4328(95)00045-3

    Article  PubMed  CAS  Google Scholar 

  69. Voutsinos-Porche B, Bonvento G, Tanaka K et al (2003) Glial glutamate transporters mediate a functional metabolic crosstalk between neurons and astrocytes in the mouse developing cortex. Neuron 37:275–286. doi:10.1016/S0896-6273(02)01170-4

    Article  PubMed  CAS  Google Scholar 

  70. Beart PM, O’Shea RD (2007) Transporters for l-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 150:5–17. doi:10.1038/sj.bjp. 0706949

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Research Council of Brazil (CNPq), Fundação de Amparo à Pesquisa do Rio Grande do Sul (PRONEX/FAPERGS), and FINEP/Rede IBN 01.06.0842-00. Leonardo M. Crema was the recipient of a CAPES fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deusa Vendite.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crema, L.M., Vendite, D., Horn, A.P. et al. Effects of Chronic Restraint Stress and Estradiol Replacement on Glutamate Release and Uptake in the Spinal Cord from Ovariectomized Female Rats. Neurochem Res 34, 499–507 (2009). https://doi.org/10.1007/s11064-008-9810-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9810-x

Keywords

Navigation