Skip to main content

Advertisement

Log in

Thrombin-Induced Regulation of CD95(Fas) Expression in the N9 Microglial Cell Line: Evidence for Involvement of Proteinase-Activated Receptor1 and Extracellular Signal-Regulated Kinase 1/2

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Microglia are the immune cells of the CNS. Brain injury triggers phenotypic changes in microglia including regulation of surface antigens. The serine proteinase α-thrombin can induce profound changes in neural cell physiology via cleavage of proteinase-activated receptors (PARs). We recently demonstrated that pharmaceutical-grade recombinant human α-thrombin (rh-thr) induces a restricted set of proteolysis-dependent changes in microglia. CD95(Fas) is a cell-death receptor that is up-regulated in microglia by inflammatory stimuli. Here we characterized the effect of rh-thr on CD95(Fas) expression in the N9 microglial cell line. Dose–response and time course studies demonstrated maximal effects at 100 U/ml and 24 h, respectively. Regulation of expression was seen at both the surface protein and steady-state mRNA levels. The rh-thr-induced effects were mimicked by PAR1 agonist peptides and blocked by pharmacologic inhibitors selective for extracellular signal-regulated kinase 1/2 (ERK 1/2). Rh-thr also induced a rapid and sustained phosphorylation of ERK 1/2. Thrombin-induced regulation of CD95(Fas) could modulate the neuroinflammatory response in a variety of neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CNS:

Central nervous system

PAR:

Proteinase-activated receptor

rh-thr:

Pharmaceutical-grade recombinant human thrombin

ERK 1/2:

Extracellular signal-regulated kinase 1/2

JNK:

c-Jun activated kinase

TNF:

Tumor necrosis factor

LPS:

Lipopolysaccharide/endotoxin

PMX:

Polymyxin B sulfate

DMEM:

Dulbecco’s modified Eagle’s Medium

FBS:

Fetal bovine serum

MSFM:

Macrophage serum-free medium

PBS:

Phosphate buffered saline

EDTA:

Ethylenediaminetetraacetic acid

Ig:

Immunoglobulin

MAPK:

Mitogen-activated protein kinase

HPRT:

Hypoxanthine phosphoribosyltransferase

References

  1. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394. doi:10.1038/nn1997

    Article  PubMed  CAS  Google Scholar 

  2. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318. doi:10.1016/0166-2236(96)10049-7

    Article  PubMed  CAS  Google Scholar 

  3. Davalos D, Grutzendler J, Yang G et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758. doi:10.1038/nn1472

    Article  PubMed  CAS  Google Scholar 

  4. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318. doi:10.1126/science.1110647

    Article  PubMed  CAS  Google Scholar 

  5. Melchior B, Puntambekar SS, Carson MJ (2006) Microglia and the control of autoreactive T cell responses. Neurochem Int 49:145–153. doi:10.1016/j.neuint.2006.04.002

    Article  PubMed  CAS  Google Scholar 

  6. Schwartz M, Butovsky O, Bruck W et al (2006) Microglial phenotype: is the commitment reversible? Trends Neurosci 29:68–74. doi:10.1016/j.tins.2005.12.005

    Article  PubMed  CAS  Google Scholar 

  7. Streit WJ (2002) Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40:133–139. doi:10.1002/glia.10154

    Article  PubMed  Google Scholar 

  8. Janeway CA, Travers P, Walport M et al (2005) T-cell mediated immunity. In: Lawrence E (ed) Immunobiology: the immune system in health and disease, 6th edn. Garland Science Publishing, New York, pp 346–355

  9. Choi C, Benveniste EN (2004) Fas ligand/Fas system in the brain: regulator of immune and apoptotic responses. Brain Res Brain Res Rev 44:65–81. doi:10.1016/j.brainresrev.2003.08.007

    Article  PubMed  CAS  Google Scholar 

  10. Badie B, Schartner J, Prabakaran S et al (2001) Expression of Fas ligand by microglia: possible role in glioma immune evasion. J Neuroimmunol 120:19–24. doi:10.1016/S0165-5728(01)00361-7

    Article  PubMed  CAS  Google Scholar 

  11. Martin-Villalba A, Herr I, Jeremias I et al (1999) CD95 ligand (Fas-L/APO-1L) and tumor necrosis factor-related apoptosis-inducing ligand mediate ischemia-induced apoptosis in neurons. J Neurosci 19:3809–3817

    PubMed  CAS  Google Scholar 

  12. Zipp F, Krammer PH, Weller M (1999) Immune (dys)regulation in multiple sclerosis: role of the CD95-CD95 ligand system. Immunol Today 20:550–554. doi:10.1016/S0167-5699(99)01545-5

    Article  PubMed  CAS  Google Scholar 

  13. Davie EW, Kulman JD (2006) An overview of the structure and function of thrombin. Semin Thromb Hemost 32(Suppl 1):3–15. doi:10.1055/s-2006-939550

    Article  PubMed  CAS  Google Scholar 

  14. Hanisch U-K, van Rossum D, Xie Y et al (2004) The microglia-activating potential of thrombin: the protease is not involved in the induction of proinflammatory cytokines and chemokines. J Biol Chem 279:51880–51887. doi:10.1074/jbc.M408318200

    Article  PubMed  CAS  Google Scholar 

  15. Weinstein JR, Hong S, Kulman JD et al (2005) Unraveling thrombin’s true microglia-activating potential: markedly disparate profiles of pharmaceutical-grade and commercial-grade thrombin preparations. J Neurochem 95:1177–1187. doi:10.1111/j.1471-4159.2005.03499.x

    Article  PubMed  CAS  Google Scholar 

  16. Weinstein JR, Swarts S, Bishop C et al (2008) Lipopolysaccharide is a frequent and significant contaminant in microglia-activating factors. Glia 56:16–26. doi:10.1002/glia.20585

    Article  PubMed  Google Scholar 

  17. Righi M, Letari O, Sacerdote P et al (1995) myc-immortalized microglial cells express a functional platelet- activating factor receptor. J Neurochem 64:121–129

    Article  PubMed  CAS  Google Scholar 

  18. Corradin SB, Mauel J, Donini SD et al (1993) Inducible nitric oxide synthase activity of cloned murine microglial cells. Glia 7:255–262. doi:10.1002/glia.440070309

    Article  PubMed  CAS  Google Scholar 

  19. Lee SJ, Zhou T, Choi C et al (2000) Differential regulation and function of Fas expression on glial cells. J Immunol 164:1277–1285

    PubMed  CAS  Google Scholar 

  20. Grand RJ, Turnell AS, Grabham PW (1996) Cellular consequences of thrombin-receptor activation. Biochem J 313:353–368

    PubMed  CAS  Google Scholar 

  21. Hollenberg MD, Compton SJ (2002) International union of pharmacology XXVIII. Proteinase-activated receptors. Pharmacol Rev 54:203–217. doi:10.1124/pr.54.2.203

    Article  PubMed  CAS  Google Scholar 

  22. Steinhoff M, Buddenkotte J, Shpacovitch V et al (2005) Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocr Rev 26:1–43

    Article  PubMed  CAS  Google Scholar 

  23. Koistinaho M, Koistinaho J (2002) Role of p38 and p44/42 mitogen-activated protein kinases in microglia. Glia 40:175–183. doi:10.1002/glia.10151

    Article  PubMed  Google Scholar 

  24. Möller T, Weinstein JR, Hanisch UK (2006) Activation of microglial cells by thrombin: past, present, and future. Semin Thromb Hemost 32(Suppl 1):69–76. doi:10.1055/s-2006-939556

    Article  PubMed  CAS  Google Scholar 

  25. http://ca.expasy.org/tools/ EPt, Swiss-Prot Protein knowledgebase TrEMBL Computer-annotated supplement to Swiss-Prot

  26. Walker WS, Gatewood J, Olivas E et al (1995) Mouse microglial cell lines differing in constitutive and interferon-gamma-inducible antigen-presenting activities for naive and memory CD4+ and CD8+ T cells. J Neuroimmunol 63:163–174. doi:10.1016/0165-5728(95)00146-8

    Article  PubMed  CAS  Google Scholar 

  27. Suo Z, Wu M, Ameenuddin S et al (2002) Participation of protease-activated receptor-1 in thrombin-induced microglial activation. J Neurochem 80:655–666. doi:10.1046/j.0022-3042.2001.00745.x

    Article  PubMed  CAS  Google Scholar 

  28. Suo Z, Wu M, Citron BA et al (2003) Persistent protease-activated receptor 4 signaling mediates thrombin-induced microglial activation. J Biol Chem 278:31177–31183. doi:10.1074/jbc.M302137200

    Article  PubMed  CAS  Google Scholar 

  29. Choi SH, Joe EH, Kim SU et al (2003) Thrombin-induced microglial activation produces degeneration of nigral dopaminergic neurons in vivo. J Neurosci 23:5877–5886

    PubMed  CAS  Google Scholar 

  30. Lee DY, Oh YJ, Jin BK (2005) Thrombin-activated microglia contribute to death of dopaminergic neurons in rat mesencephalic cultures: dual roles of mitogen-activated protein kinase signaling pathways. Glia 51:98–110. doi:10.1002/glia.20190

    Article  PubMed  Google Scholar 

  31. Xi G, Reiser G, Keep RF (2003) The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury: deleterious or protective? J Neurochem 84:3–9. doi:10.1046/j.1471-4159.2003.01268.x

    Article  PubMed  CAS  Google Scholar 

  32. Ohnishi M, Katsuki H, Fujimoto S et al (2007) Involvement of thrombin and mitogen-activated protein kinase pathways in hemorrhagic brain injury. Exp Neurol 206:43–52. doi:10.1016/j.expneurol.2007.03.030

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH/NINDS grants NS44337 (TM) and NS047309 (JRW). The authors thank ZymoGenetics, Inc., Seattle, WA, USA for the generous gift of pharmaceutical-grade recombinant human α-thrombin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan R. Weinstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinstein, J.R., Zhang, M., Kutlubaev, M. et al. Thrombin-Induced Regulation of CD95(Fas) Expression in the N9 Microglial Cell Line: Evidence for Involvement of Proteinase-Activated Receptor1 and Extracellular Signal-Regulated Kinase 1/2. Neurochem Res 34, 445–452 (2009). https://doi.org/10.1007/s11064-008-9803-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9803-9

Keywords

Navigation