Skip to main content

Advertisement

Log in

Regulation and Function of Cyclic GMP-Mediated Pathways in Glial Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

A large body of evidence supports a role for the NO-cGMP-protein kinase G pathway in the regulation of synaptic transmission and plasticity, brain development and neuroprotection. Circumstancial evidence implicates natriuretic peptide-stimulated cGMP formation in the same CNS functions. In addition to neurons, both cGMP-mediated pathways are functional in glial cells and an increasing number of reports indicate that they may control important aspects of glial cell physiology relevant to neuronal function. In this article we briefly review the regulation of cGMP formation in glial cells and summarize recent evidence indicating that cGMP-mediated pathways can play important roles in astroglial and microglial function in normal and diseased brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Cao LH, Yang XL (2008) Natriuretic peptides and their receptors in the central nervous system. Prog Neurobiol 84:234–248

    Article  PubMed  CAS  Google Scholar 

  2. Lucas KA, Pitari GM, Kazerounian S et al (2000) Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 52:375–414

    PubMed  CAS  Google Scholar 

  3. Murphy S (2000) Production of nitric oxide by glial cells: regulation and potential roles in the CNS. Glia 29:1–13

    Article  PubMed  CAS  Google Scholar 

  4. Calabrese V, Mancuso C, Calvani M et al (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8:766–775

    Article  PubMed  CAS  Google Scholar 

  5. Guix FX, Uribesalgo I, Coma M et al (2005) The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 76:126–152

    Article  PubMed  CAS  Google Scholar 

  6. García A, Baltrons MA (2004) The nitric oxide/cyclic GMP pathway in CNS glial cells. In: Advances in molecular and cell biology. Amsterdam, pp 575–594

  7. Russwurm M, Koesling D (2002) Isoforms of NO-sensitive guanylyl cyclase. Mol Cell Biochem 230:159–164

    Article  PubMed  CAS  Google Scholar 

  8. Pifarre P, Garcia A, Mengod G (2007) Species differences in the localization of soluble guanylyl cyclase subunits in monkey and rat brain. J Comp Neurol 500:942–957

    Article  PubMed  CAS  Google Scholar 

  9. Baltrons MA, Pifarre P, Ferrer I et al (2004) Reduced expression of NO-sensitive guanylyl cyclase in reactive astrocytes of Alzheimer disease, Creutzfeldt-Jakob disease, and multiple sclerosis brains. Neurobiol Dis 17:462–472

    Article  PubMed  CAS  Google Scholar 

  10. Ding JD, Burette A, Nedvetsky PI et al (2004) Distribution of soluble guanylyl cyclase in the rat brain. J Comp Neurol 472:437–448

    Article  PubMed  CAS  Google Scholar 

  11. Teunissen C, Steinbusch H, Markerink-van Ittersum M et al (2001) Presence of soluble and particulate guanylyl cyclase in the same hippocampal astrocytes. Brain Res 891:206–212

    Article  PubMed  CAS  Google Scholar 

  12. Potter LR, Abbey-Hosch S, Dickey DM (2006) Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev 27:47–72

    Article  PubMed  CAS  Google Scholar 

  13. Wiggins AK, Shen PJ, Gundlach AL (2003) Atrial natriuretic peptide expression is increased in rat cerebral cortex following spreading depression: possible contribution to sd-induced neuroprotection. Neuroscience 118:715–726

    Article  PubMed  CAS  Google Scholar 

  14. De Vente J, Bol JG, Steinbusch HW (1989) cGMP-producing, atrial natriuretic factor-responding cells in the rat brain. Eur J Neurosci 1:436–460

    Article  PubMed  Google Scholar 

  15. Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511

    Article  PubMed  CAS  Google Scholar 

  16. Bender AT, Beavo JA (2004) Specific localized expression of cGMP PDEs in Purkinje neurons and macrophages. Neurochem Int 45:853–857

    Article  PubMed  CAS  Google Scholar 

  17. de Vente J, Steinbusch H (2000) Nitric oxide-cGMP signalling in the rat brain. In: Funcional neuroanatomy of the nitric oxide system. Handbook of chemical neuroanatomy. Elsevier, Amsterdam, pp 355–415

  18. Tanaka J, Markerink-van Ittersum M, Steinbusch HW et al (1997) Nitric oxide-mediated cGMP synthesis in oligodendrocytes in the developing rat brain. Glia 19:286–297

    Article  PubMed  CAS  Google Scholar 

  19. Agullo L, Garcia A (1997) Ca2+/calmodulin-dependent cyclic GMP phosphodiesterase activity in granule neurons and astrocytes from rat cerebellum. Eur J Pharmacol 323:119–125

    Article  PubMed  CAS  Google Scholar 

  20. Boran MS, Baltrons MA, Garcia A (2008) The ANP-cGMP-protein kinase G pathway induces a phagocytic phenotype but decreases inflammatory gene expression in microglial cells. Glia 56:394–411

    Article  PubMed  Google Scholar 

  21. Feil R, Hofmann F, Kleppisch T (2005) Function of cGMP-dependent protein kinases in the nervous system. Rev Neurosci 16:23–41

    PubMed  CAS  Google Scholar 

  22. de Vente J, Asan E, Gambaryan S et al (2001) Localization of cGMP-dependent protein kinase type II in rat brain. Neuroscience 108:27–49

    Article  PubMed  Google Scholar 

  23. Saha RN, Pahan K (2006) Signals for the induction of nitric oxide synthase in astrocytes. Neurochem Int 49:154–163

    Article  PubMed  CAS  Google Scholar 

  24. Oka M, Wada M, Yamamoto A et al (2004) Functional expression of constitutive nitric oxide synthases regulated by voltage-gated Na+ and Ca2+ channels in cultured human astrocytes. Glia 46:53–62

    Article  PubMed  Google Scholar 

  25. Arbones ML, Ribera J, Agullo L et al (1996) Characteristics of nitric oxide synthase type I of rat cerebellar astrocytes. Glia 18:224–232

    Article  PubMed  CAS  Google Scholar 

  26. Kugler P, Drenckhahn D (1996) Astrocytes and Bergmann glia as an important site of nitric oxide synthase I. Glia 16:165–173

    Article  PubMed  CAS  Google Scholar 

  27. Catania MV, Aronica E, Yankaya B et al (2001) Increased expression of neuronal nitric oxide synthase spliced variants in reactive astrocytes of amyotrophic lateral sclerosis human spinal cord. J Neurosci 21:RC148

    PubMed  CAS  Google Scholar 

  28. Cha CI, Kim JM, Shin DH et al (1998) Reactive astrocytes express nitric oxide synthase in the spinal cord of transgenic mice expressing a human Cu/Zn SOD mutation. Neuroreport 9:1503–1506

    PubMed  CAS  Google Scholar 

  29. Simic G, Lucassen PJ, Krsnik Z et al (2000) nNOS expression in reactive astrocytes correlates with increased cell death related DNA damage in the hippocampus and entorhinal cortex in Alzheimer’s disease. Exp Neurol 165:12–26

    Article  PubMed  CAS  Google Scholar 

  30. Shen PJ, Gundlach AL (1999) Prolonged induction of neuronal NOS expression and activity following cortical spreading depression (SD): implications for SD- and NO-mediated neuroprotection. Exp Neurol 160:317–332

    Article  PubMed  CAS  Google Scholar 

  31. Caggiano AO, Kraig RP (1998) Neuronal nitric oxide synthase expression is induced in neocortical astrocytes after spreading depression. J Cereb Blood Flow Metab 18:75–87

    Article  PubMed  CAS  Google Scholar 

  32. Wiencken AE, Casagrande VA (1999) Endothelial nitric oxide synthetase (eNOS) in astrocytes: another source of nitric oxide in neocortex. Glia 26:280–290

    Article  PubMed  CAS  Google Scholar 

  33. Barna M, Komatsu T, Reiss CS (1996) Activation of type III nitric oxide synthase in astrocytes following a neurotropic viral infection. Virology 223:331–343

    Article  PubMed  CAS  Google Scholar 

  34. Iwase K, Miyanaka K, Shimizu A et al (2000) Induction of endothelial nitric-oxide synthase in rat brain astrocytes by systemic lipopolysaccharide treatment. J Biol Chem 275:11929–11933

    Article  PubMed  CAS  Google Scholar 

  35. Sohn YK, Ganju N, Bloch KD et al (1999) Neuritic sprouting with aberrant expression of the nitric oxide synthase III gene in neurodegenerative diseases. J Neurol Sci 162:133–151

    Article  PubMed  CAS  Google Scholar 

  36. de Vente J, Steinbusch HW (1992) On the stimulation of soluble and particulate guanylate cyclase in the rat brain and the involvement of nitric oxide as studied by cGMP immunocytochemistry. Acta Histochem 92:13–38

    PubMed  Google Scholar 

  37. Roy A, Fung YK, Liu X et al (2006) Up-regulation of microglial CD11b expression by nitric oxide. J Biol Chem 281:14971–14980

    Article  PubMed  CAS  Google Scholar 

  38. Pyriochou A, Papapetropoulos A (2005) Soluble guanylyl cyclase: more secrets revealed. Cell Signal 17:407–413

    Article  PubMed  CAS  Google Scholar 

  39. Baltrons MA, Pifarre P, Berciano MT et al (2008) LPS-induced down-regulation of NO-sensitive guanylyl cyclase in astrocytes occurs by proteasomal degradation in clastosomes. Mol Cell Neurosci 37:494–506

    Article  PubMed  CAS  Google Scholar 

  40. Pifarre P, Baltrons MA, Davalos V et al (2007) NO-sensitive guanylyl cyclase b1 subunit interact with chromosomes during mitosis: novel role in the regulation of chromatin condensation. BMC Pharmacology 7(suppl I):s43

    Article  Google Scholar 

  41. Bellamy TC, Garthwaite J (2002) The receptor-like properties of nitric oxide-activated soluble guanylyl cyclase in intact cells. Mol Cell Biochem 230:165–176

    Article  PubMed  CAS  Google Scholar 

  42. Sardon T, Baltrons MA, Garcia A (2004) Nitric oxide-dependent and independent down-regulation of NO-sensitive guanylyl cyclase in neural cells. Toxicol Lett 149:75–83

    Article  PubMed  CAS  Google Scholar 

  43. Takata M, Filippov G, Liu H et al (2001) Cytokines decrease sGC in pulmonary artery smooth muscle cells via NO-dependent and NO-independent mechanisms. Am J Physiol Lung Cell Mol Physiol 280:L272–L278

    PubMed  CAS  Google Scholar 

  44. Pedraza CE, Baltrons MA, Heneka MT et al (2003) Interleukin-1 beta and lipopolysaccharide decrease soluble guanylyl cyclase in brain cells: NO-independent destabilization of protein and NO-dependent decrease of mRNA. J Neuroimmunol 144:80–90

    Article  PubMed  CAS  Google Scholar 

  45. Baltrons MA, Pedraza CE, Heneka MT et al (2002) Beta-amyloid peptides decrease soluble guanylyl cyclase expression in astroglial cells. Neurobiol Dis 10:139–149

    Article  PubMed  CAS  Google Scholar 

  46. Duport S, Garthwaite J (2005) Pathological consequences of inducible nitric oxide synthase expression in hippocampal slice cultures. Neuroscience 135:1155–1166

    Article  PubMed  CAS  Google Scholar 

  47. Bonkale WL, Winblad B, Ravid R et al (1995) Reduced nitric oxide responsive soluble guanylyl cyclase activity in the superior temporal cortex of patients with Alzheimer’s disease. Neurosci Lett 187:5–8

    Article  PubMed  CAS  Google Scholar 

  48. Ibarra C, Nedvetsky PI, Gerlach M et al (2001) Regional and age-dependent expression of the nitric oxide receptor, soluble guanylyl cyclase, in the human brain. Brain Res 907:54–60

    Article  PubMed  CAS  Google Scholar 

  49. Markerink-Van Ittersum M, Steinbusch HW, De Vente J (1997) Region-specific developmental patterns of atrial natriuretic factor- and nitric oxide-activated guanylyl cyclases in the postnatal frontal rat brain. Neuroscience 78:571–587

    Article  PubMed  CAS  Google Scholar 

  50. Takuma K, Phuagphong P, Lee E et al (2001) Anti-apoptotic effect of cGMP in cultured astrocytes: inhibition by cGMP-dependent protein kinase of mitochondrial permeable transition pore. J Biol Chem 276:48093–48099

    PubMed  CAS  Google Scholar 

  51. Krzan M, Stenovec M, Kreft M et al (2003) Calcium-dependent exocytosis of atrial natriuretic peptide from astrocytes. J Neurosci 23:1580–1583

    PubMed  CAS  Google Scholar 

  52. Paulding WR, Sumners C (1996) Protein kinase C modulates natriuretic peptide receptors in astroglial cultures from rat brain. Am J Physiol 270:C740–C747

    PubMed  CAS  Google Scholar 

  53. Teunissen CE, Steinbusch HW, Markerink-van Ittersum M et al (2000) Whole brain spheroid cultures as a model to study the development of nitric oxide synthase-guanylate cyclase signal transduction. Brain Res Dev Brain Res 125:99–115

    Article  PubMed  CAS  Google Scholar 

  54. Moriyama N, Taniguchi M, Miyano K et al (2006) ANP inhibits LPS-induced stimulation of rat microglial cells by suppressing NF-kappaB and AP-1 activations. Biochem Biophys Res Commun 350:322–328

    Article  PubMed  CAS  Google Scholar 

  55. Tang W, Paulding WR, Sumners C (1993) ANP receptors in neurons and astrocytes from spontaneously hypertensive rat brain. Am J Physiol 265:C106–C112

    PubMed  CAS  Google Scholar 

  56. Nogami M, Shiga J, Takatsu A et al (2001) Immunohistochemistry of atrial natriuretic peptide in brain infarction. Histochem J 33:87–90

    Article  PubMed  CAS  Google Scholar 

  57. Zielinska M, Fresko I, Konopacka A et al (2007) Hyperammonemia inhibits the natriuretic peptide receptor 2 (NPR-2)-mediated cyclic GMP synthesis in the astrocytic compartment of rat cerebral cortex slices. Neurotoxicology 28:1260–1263

    Article  PubMed  CAS  Google Scholar 

  58. Willmott NJ, Wong K, Strong AJ (2000) A fundamental role for the nitric oxide-G-kinase signaling pathway in mediating intercellular Ca(2+) waves in glia. J Neurosci 20:1767–1779

    PubMed  CAS  Google Scholar 

  59. Asano S, Matsuda T, Takuma K et al (1995) Nitroprusside and cyclic GMP stimulate Na(+)-Ca2+ exchange activity in neuronal preparations and cultured rat astrocytes. J Neurochem 64:2437–2441

    Article  PubMed  CAS  Google Scholar 

  60. Araque A, Carmignoto G, Haydon PG (2001) Dynamic signaling between astrocytes and neurons. Annu Rev Physiol 63:795–813

    Article  PubMed  CAS  Google Scholar 

  61. Pasti L, Pozzan T, Carmignoto G (1995) Long-lasting changes of calcium oscillations in astrocytes. A new form of glutamate-mediated plasticity. J Biol Chem 270:15203–15210

    Article  PubMed  CAS  Google Scholar 

  62. Boran MS, Garcia A (2007) The cyclic GMP-protein kinase G pathway regulates cytoskeleton dynamics and motility in astrocytes. J Neurochem 102:216–230

    Article  PubMed  CAS  Google Scholar 

  63. Xiong H, Yamada K, Jourdi H et al (1999) Regulation of nerve growth factor release by nitric oxide through cyclic GMP pathway in cortical glial cells. Mol Pharmacol 56:339–347

    PubMed  CAS  Google Scholar 

  64. Brahmachari S, Fung YK, Pahan K (2006) Induction of glial fibrillary acidic protein expression in astrocytes by nitric oxide. J Neurosci 26:4930–4939

    Article  PubMed  CAS  Google Scholar 

  65. Latzkovits L, Cserr HF, Park JT et al (1993) Effects of arginine vasopressin and atriopeptin on glial cell volume measured as 3-MG space. Am J Physiol 264:C603–C608

    PubMed  CAS  Google Scholar 

  66. Kalisch F, Wurm A, Iandiev I et al (2006) Atrial natriuretic peptide inhibits osmotical glial cell swelling in the ischemic rat retina: dependence on glutamatergic-purinergic signaling. Exp Eye Res 83:962–971

    Article  PubMed  CAS  Google Scholar 

  67. Touyz RM, Picard S, Schiffrin EL et al (1997) Cyclic GMP inhibits a pharmacologically distinct Na+/H+ exchanger variant in cultured rat astrocytes via an extracellular site of action. J Neurochem 68:1451–1461

    PubMed  CAS  Google Scholar 

  68. Tait MJ, Saadoun S, Bell BA et al (2008) Water movements in the brain: role of aquaporins. Trends Neurosci 31:37–43

    Article  PubMed  CAS  Google Scholar 

  69. Miyajima M, Arai H, Okuda O et al (2004) Effect of C-type natriuretic peptide (CNP) on water channel aquaporin-4 (AQP4) expression in cultured astrocytes. Brain Res Mol Brain Res 122:109–115

    Article  PubMed  CAS  Google Scholar 

  70. Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623

    Article  PubMed  CAS  Google Scholar 

  71. Vollmar AM (2005) The role of atrial natriuretic peptide in the immune system. Peptides 26:1086–1094

    Article  PubMed  CAS  Google Scholar 

  72. Choi SH, Choi DH, Song KS et al (2002) Zaprinast, an inhibitor of cGMP-selective phosphodiesterases, enhances the secretion of TNF-alpha and IL-1beta and the expression of iNOS and MHC class II molecules in rat microglial cells. J Neurosci Res 67:411–421

    Article  PubMed  CAS  Google Scholar 

  73. Paris D, Town T, Mullan M (2000) Novel strategies for opposing murine microglial activation. Neurosci Lett 278:5–8

    Article  PubMed  CAS  Google Scholar 

  74. Paris D, Town T, Parker TA et al (1999) Inhibition of Alzheimer’s beta-amyloid induced vasoactivity and proinflammatory response in microglia by a cGMP-dependent mechanism. Exp Neurol 157:211–221

    Article  PubMed  CAS  Google Scholar 

  75. Duan Y, Panoff J, Burrell BD et al (2005) Repair and regeneration of functional synaptic connections: cellular and molecular interactions in the leech. Cell Mol Neurobiol 25:441–450

    Article  PubMed  Google Scholar 

  76. Heuschling P (1995) Nitric oxide modulates gamma-interferon-induced MHC class II antigen expression on rat astrocytes. J Neuroimmunol 57:63–69

    Article  PubMed  CAS  Google Scholar 

  77. Shin CY, Lee WJ, Choi JW et al (2007) Down-regulation of matrix metalloproteinase-9 expression by nitric oxide in lipopolysaccharide-stimulated rat primary astrocytes. Nitric Oxide 16:425–432

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Ministerio de Educación y Ciencia (MEC), Spain (SAF2004-01717) and Direcció General de Recerca (DGR), Generalitat de Catalunya (SGR2005-939) to AG. MSB and PP were recipients of predoctoral fellowships from DGR and MEC, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustina García.

Additional information

Special issue article in honor of Dr. Anna Maria Giuffrida-Stella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baltrons, M.A., Borán, M.S., Pifarré, P. et al. Regulation and Function of Cyclic GMP-Mediated Pathways in Glial Cells. Neurochem Res 33, 2427–2435 (2008). https://doi.org/10.1007/s11064-008-9681-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9681-1

Keywords

Navigation