Neurochemical Research

, Volume 33, Issue 8, pp 1568–1573 | Cite as

Sex Steroids Effects on the Content of GAD, TH, GABAA, and Glutamate Receptors in the Olfactory Bulb of the Male Rat

  • Christian Guerra-Araiza
  • Alfredo Miranda-Martinez
  • Teresa Neri-Gómez
  • Ignacio Camacho-Arroyo
Original Paper

Abstract

Sex steroids exert multiple functions in the central nervous system. They modulate responses to olfactory information in mammals but their participation in the regulation of neurotransmission in the olfactory bulb is unknown. We studied by Western blot the effects of estradiol (E2), progesterone (P4), and allopregnanolone (Allo) on the content of glutamic acid decarboxylase (GAD), γ-aminobutyric acid A receptor α-2 subunit (GABAAR α-2), glutamate receptor 2/3 (GlutR 2/3), and tyrosine hydroxylase (TH) in the olfactory bulb of gonadectomized male rats. GAD content was increased by all steroids administered alone. Interestingly, progestins reduced E2 effects on GAD content. Steroids increased the content of TH and GABAAR α-2. In contrast, GlutR 2/3 content was decreased by E2 and P4, whereas Allo did not modify it. These results suggest that estrogens and progestins regulate olfactory bulb functions in the male rat by modulating the expression of key proteins involved in several neurotransmission systems.

Keywords

Olfactory bulb Estradiol Progesterone Glutamic acid decarboxylase Tyrosine hydroxylase GABAA receptor Glutamate receptor 

References

  1. 1.
    Bliss EL, Frischat A, Samuels L (1972) Brain and testicular function. Life Sci 11:231–238CrossRefGoogle Scholar
  2. 2.
    Muroi Y, Ishii T, Komori S et al (2006) A competitive effect of androgen signaling on male mouse attraction to volatile female mouse odors. Physiol Behav 87:199–205PubMedCrossRefGoogle Scholar
  3. 3.
    Guo XZ, Su JD, Sun QW et al (2001) Expression of estrogen receptor (ER) -alpha and -beta transcripts in the neonatal and adult rat cerebral cortex, cerebellum, and olfactory bulb. Cell Res 11:321–324PubMedCrossRefGoogle Scholar
  4. 4.
    Guerra-Araiza C, Coyoy-Salgado A, Camacho-Arroyo I (2002) Sex differences in the regulation of progesterone receptor isoforms expression in the rat brain. Brain Res Bull 59:105–109PubMedGoogle Scholar
  5. 5.
    Beltramino C, Taleisnik S (1983) Release of LH in the female by olfactory stimuli. Neuroendocrinology 36:53–58PubMedCrossRefGoogle Scholar
  6. 6.
    Romero PR, Beltramino CA, Carrer HF (1990) Participation of the olfactory system in the control of approach behavior of the female rat to the male. Physiol Behav 47:685–690PubMedCrossRefGoogle Scholar
  7. 7.
    Grigorjev C, Munaro N (1999) Time-dependent GABA-ergic activity in olfactory bulb and hypothalamus of proestrous rats. Brain Res Bull 48:569–572PubMedCrossRefGoogle Scholar
  8. 8.
    Tapia R, Sandoval ME, Contreras P (1975) Evidence for a role of glutamate decarboxylase activity as a regulatory mechanism of cerebral excitability. J Neurochem 24:1283–1285PubMedCrossRefGoogle Scholar
  9. 9.
    Ribak CE, Vaughn JE, Saito K et al (1977) Glutamate decarboxylase localization in neurons of the olfactory bulb. Brain Res 126:1–18PubMedCrossRefGoogle Scholar
  10. 10.
    Munaro NI (1990) Maternal behavior: glutamic acid decarboxylase activity in the olfactory bulb of the rat. Pharmacol Biochem Behav 36:81–84PubMedCrossRefGoogle Scholar
  11. 11.
    Navarro Becerra N, Munaro NI (1992) Gamma-aminobutyric acid activity in the olfactory bulb of the rat during the sexual cycle and response to olfactory stimuli. Can J Physiol Pharmacol 70:922–925PubMedGoogle Scholar
  12. 12.
    Navarro Becerra N, Grigorjev C, Munaro N (1996) Glutamic acid decarboxylase in rat olfactory bulb: effect of ovarian steroids or male pheromones. Eur J Pharmacol 312:83–87PubMedCrossRefGoogle Scholar
  13. 13.
    Halasz N, Johansson O, Hokfelt T et al (1981) Immunohistochemical identification of two types of dopamine neuron in the rat olfactory bulb as seen by serial sectioning. J Neurocytol 10:251–259PubMedCrossRefGoogle Scholar
  14. 14.
    Kosaka K, Toida K, Aika Y et al (1998) How simple is the organization of the olfactory glomerulus? The heterogeneity of so-called periglomerular cells. Neurosci Res 30:101–110PubMedCrossRefGoogle Scholar
  15. 15.
    Ennis M, Zhou FM, Ciombor KJ et al (2001) Dopamine D2 receptor-mediated presynaptic inhibition of olfactory nerve terminals. J Neurophysiol 86:2986–2997PubMedGoogle Scholar
  16. 16.
    Brunig I, Sommer M, Hatt H et al (1999) Dopamine receptor subtypes modulate olfactory bulb gamma-aminobutyric acid type A receptors. Proc Natl Acad Sci USA 96:2456–2460PubMedCrossRefGoogle Scholar
  17. 17.
    Wilson DA, Sullivan RM (1995) The D2 antagonist spiperone mimics the effects of olfactory deprivation on mitral/tufted cell odor response patterns. J Neurosci 15:5574–5581PubMedGoogle Scholar
  18. 18.
    Gomez C, Brinon JG, Valero J et al (2007) Sex differences in catechol contents in the olfactory bulb of control and unilaterally deprived rats. Eur J Neurosci 25:1517–1528PubMedCrossRefGoogle Scholar
  19. 19.
    Hayashi Y, Momiyama A, Takahashi T (1993) Role of a metabotropic glutamate receptor in synaptic modulation in the accessory olfactory bulb. Nature 366:687–690PubMedCrossRefGoogle Scholar
  20. 20.
    Sahara Y, Kubota T, Ichikawa M (2001) Cellular localization of metabotropic glutamate receptors mGluR1, 2/3, 5 and 7 in the main and accessory olfactory bulb of the rat. Neurosci Lett 312:59–62PubMedCrossRefGoogle Scholar
  21. 21.
    Joh HD, Searles RV, Selmanoff M et al (2006) Estradiol alters only GAD67 mRNA levels in ischemic rat brain with no consequent effects on GABA. J Cereb Blood Flow Metab 26:518–526PubMedCrossRefGoogle Scholar
  22. 22.
    Nakamura NH, Rosell DR, Akama KT (2004) Estrogen and ovariectomy regulate mRNA and protein of glutamic acid decarboxylases and cation-chloride cotransporters in the adult rat hippocampus. Neuroendocrinology 80:308–323PubMedCrossRefGoogle Scholar
  23. 23.
    Weiland NG (1992) Glutamic acid decarboxylase messenger ribonucleic acid is regulated by estradiol and progesterone in the hippocampus. Endocrinology 131:2697–2702PubMedCrossRefGoogle Scholar
  24. 24.
    Serova LI, Maharjan S, Huang A et al (2004) Response of tyrosine hydroxylase and GTP cyclohydrolase I gene expression to estrogen in brain catecholaminergic regions varies with mode of administration. Brain Res 1015:1–8PubMedCrossRefGoogle Scholar
  25. 25.
    Kohama SG, Bethea CL (1995) Steroid regulation of tyrosine hydroxylase messenger ribonucleic acid in dopaminergic subpopulations of monkey hypothalamus. Endocrinology 136:1790–1800PubMedCrossRefGoogle Scholar
  26. 26.
    Cyr M, Ghribi O, Di Paolo T (2000) Regional and selective effects of oestradiol and progesterone on NMDA and AMPA receptors in the rat brain. J Neuroendocrinol 12:445–452PubMedCrossRefGoogle Scholar
  27. 27.
    Weiland NG, Orchinik M (1995) Specific subunit mRNAs of the GABAA receptor are regulated by progesterone in subfields of the hippocampus. Mol Brain Res 32:271–278PubMedCrossRefGoogle Scholar
  28. 28.
    Frye CA, Manjarrez J, Camacho-Arroyo I (2000) Infusion of 3α, 5α-THP to the pontine reticular formation attenuates PTZ-induced seizures. Brain Res 881:98–102PubMedCrossRefGoogle Scholar
  29. 29.
    Salazar P, Tapia R, Rogawski MA (2003) Effects of neurosteroids on epileptiform activity induced by picrotoxin and 4-aminopyridine in the rat hippocampal slice. Epilepsy Res 55:71–82PubMedCrossRefGoogle Scholar
  30. 30.
    Rupprecht R, Hauser CA, Trapp T, Holsboer F (1996) Neurosteroids: molecular mechanisms of action and psychopharmacological significance. J Steroid Biochem Mol Biol 56:163–168PubMedCrossRefGoogle Scholar
  31. 31.
    Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, CaliforniaGoogle Scholar
  32. 32.
    Frye CA, Bayon LE, Purnani NK, Purdy RH (1998) The neurosteroids, progesterone and 3alpha, 5alpha-THP, enhance sexual motivation, receptivity, and proceptivity in female rats. Brain Res 808:72–83PubMedCrossRefGoogle Scholar
  33. 33.
    Herbison AE, Fenelon VS (1995) Estrogen regulation of GABAA receptor subunit mRNA expression in preoptic area and bed nucleus of the stria terminalis of female rat brain. J Neurosci 15:2328–2337PubMedGoogle Scholar
  34. 34.
    Da Settimo F, Taliani S, Trincavelli ML, Montali M, Martini C (2007) GABA A/Bz receptor subtypes as targets for selective drugs. Curr Med Chem 14:2680–2701PubMedCrossRefGoogle Scholar
  35. 35.
    Follesa P, Biggio F, Caria S et al (2004) Modulation of GABA(A) receptor gene expression by allopregnanolone and ethanol. Eur J Pharmacol 500:413–425PubMedCrossRefGoogle Scholar
  36. 36.
    Charalampopoulos I, Dermitzaki E, Vardouli L et al (2005) Dehydroepiandrosterone sulfate and allopregnanolone directly stimulate catecholamine production via induction of tyrosine hydroxylase and secretion by affecting actin polymerization. Endocrinology 146:3309–3318PubMedCrossRefGoogle Scholar
  37. 37.
    Gu G, Varoqueaux F, Simerly RB (1999) Hormonal regulation of glutamate receptor gene expression in the anteroventral periventricular nucleus of the hypothalamus. J Neurosci 19:3213–3222PubMedGoogle Scholar
  38. 38.
    Gazzaley AH, Weiland NG, McEwen BS et al (1996) Differential regulation of NMDAR1 mRNA and protein by estradiol in the rat hippocampus. J Neurosci 16:6830–6838PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Christian Guerra-Araiza
    • 1
  • Alfredo Miranda-Martinez
    • 1
  • Teresa Neri-Gómez
    • 2
  • Ignacio Camacho-Arroyo
    • 2
  1. 1.Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro SocialMexicoMexico
  2. 2.Facultad de Química, Departamento de BiologíaUniversidad Nacional Autónoma de MéxicoMexicoMexico

Personalised recommendations