Skip to main content
Log in

Protective Effect of L-type Calcium Channel Blockers Against Haloperidol-induced Orofacial Dyskinesia: A Behavioural, Biochemical and Neurochemical Study

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Haloperidol is a classical neuroleptic drug that is still in use and can lead to abnormal motor activity such as tardive dyskinesia (TD) following repeated administration. TD has no effective therapy yet. There is involvement of calcium in triggering the oxidative damage and excitotoxicity, both of which play central role in haloperidol-induced orofacial dyskinesia and associated alterations. The present study was carried out to investigate the protective effect of calcium channel blockers [verapamil (10 and 20 mg/kg), diltiazem (10 and 20 mg/kg), nifedipine (10 and 20 mg/kg) and nimodipine (10 and 20 mg/kg)] against haloperidol induced orofacial dyskinesia and associated behavioural, biochemical and neurochemical alterations in rats. Chronic administration of haloperidol (1 mg/kg i.p., 21 days) resulted in a significant increase in orofacial dyskinetic movements and significant decrease in % retention, coupled with the marked increase in lipid peroxidation and superoxide anion generation where as significant decrease in non protein thiols and endogenous antioxidant enzyme (SOD and catalase) levels in rat brain striatum homogenates. All these deleterious effects of haloperidol were significantly attenuated by co-administration of different calcium channel blockers. Neurochemically, chronic administration of haloperidol resulted in significant decrease in levels of catecholamines (dopamine, serotonin) and their metabolites (HVA and HIAA) but increased turnover of dopamine and serotonin. Co-administration of most effective doses of verapamil, diltiazem, nifedipine and nimodipine significantly attenuated these neurochemical changes. Results of the present study indicate that haloperidol-induced calcium ion influx is involved in the pathogenesis of tardive dyskinesia and calcium channel blockers should be tested in clinical trials with nifedipine as the most promising one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kim HS, Yumkham S, Choi JH, Kim EK, Kim YS, Ryu SH, Suh PG (2006) Haloperidol induces calcium ion influx via L-type calcium channels in hippocampal HN33 cells and renders the neurons more susceptible to oxidative stress. Mol Cells 22(1):51–57

    Article  PubMed  CAS  Google Scholar 

  2. Kane J (1995) Tardive dyskinesia: epidemiological and clinical presentation. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven, New York, pp 1485–1495

    Google Scholar 

  3. Gerlach J, Reys T, Kristjansen P (1978) Effect of baclofen on tardive dyskinesia. Psychopharmacology 56:145–151

    Article  PubMed  CAS  Google Scholar 

  4. Naidu PS, Singh A, Kulkarni SK (2003) Quercetin, a bioflavonoid attenuated haloperidol induced orofacial dyskinesia. Neuropharmacology 44:1100–1106

    Article  PubMed  CAS  Google Scholar 

  5. Naidu PS, Singh A, Kulkarni SK (2002) Carvedilol attenuates neuroleptic-induced orofacial dyskinesia: possible antioxidant mechanisms. Br J Pharmacol 136(2):193–200

    Article  PubMed  CAS  Google Scholar 

  6. Burger ME, Fachineto R, Alves A, Callegari L, Rocha JB (2005) Acute reserpine and subchronic haloperidol treatments change synaptosomal brain glutamate uptake and elicit orofacial dyskinesia in rats. Brain Res 1031(2):202–210

    Article  PubMed  CAS  Google Scholar 

  7. Tsai G, Goff DC, Chang RW, Flood J, Baer L, Coyle JT (1998) Markers of glutamatergic neurotransmission and oxidative stress associated with tardive dyskinesia. Am J Psychiatry 155(9):1207–1213

    PubMed  CAS  Google Scholar 

  8. Torreano PJ, Cohan CS (2003) Calcium and voltage dependent inactivation of sodium and calcium currents limits calcium influx in Helisoma neurons. J Neurobiol 54(3):439–456

    Article  PubMed  CAS  Google Scholar 

  9. Arundine M, Tymianski M (2003) Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34(4–5):325–337. Review

    Article  PubMed  CAS  Google Scholar 

  10. Thayer SA, Usachev YM, Pottorf WJ (2002) Modulating Ca2+ clearance from neurons. Front Biosci 7:d1255–d1279

    Article  PubMed  CAS  Google Scholar 

  11. Sattler R, Tymianski M (2001) Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol 24(1–3):107–129. Review

    Article  PubMed  CAS  Google Scholar 

  12. Soares-Weiser K, Rathbone J (2004) Calcium channel blockers for neuroleptic-induced tardive dyskinesia. Cochrane Database Syst Rev (1):CD000206. Review

  13. Pereira JS, Bertolucci PH, Ferraz HB, De Andrade LA (1992) A study on the action of two calcium channel blockers (verapamil and flunarizine) upon an experimental model of tardive dyskinesia in rats. Arq Neuropsiquiatr 50(3):263–268

    PubMed  CAS  Google Scholar 

  14. Cates M, Lusk K, Wells BG (1993) Are calcium-channel blockers effective in the treatment of tardive dyskinesia? Ann Pharmacother 27(2):191–196

    PubMed  CAS  Google Scholar 

  15. Suddath RL, Straw GM, Freed WJ, Bigelow LB, Kirch DG, Wyatt RJ (1991) A clinical trial of nifedipine in schizophrenia and tardive dyskinesia. Pharmacol Biochem Behav 39(3):743–745

    Article  PubMed  CAS  Google Scholar 

  16. Reddy DS, Kulkarni SK (1998) Possible role of nitric oxide in the nootropic and antiamnesic effects of neurosteroids on aging and dizocilpine induced learning impairment. Brain Res 799:215–219

    Article  PubMed  CAS  Google Scholar 

  17. Wills ED (1966) Mechanism of lipid peroxide formation in animal tissues. Biochem J 99:667–676

    PubMed  CAS  Google Scholar 

  18. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  PubMed  CAS  Google Scholar 

  19. Babior BM, Kipner RS, Cerutte JT (1973) Biological defense mechanism. The production by leukocytes of superoxide, a potential bacterial agent. J Clin Invest 52:7451–7744

    Article  Google Scholar 

  20. Kono Y (1978) Generation of superoxide radical during auto-oxidation of hydroxylamine and an assay of superoxide dismutase. Arch Biochem Biophys 186:189–195

    Article  PubMed  CAS  Google Scholar 

  21. Luck H (1963) Catalase spectrophotometric method. Methods in enzymatic analysis. Academic press, Newyork

    Google Scholar 

  22. Lowry OH, Rosenbrought NJ, Farr AL, Randall RJ (1951) Protein measurements with the Folin-phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  23. Church WH (2005) Column chromatography analysis of brain tissue: an advanced laboratory exercise for neuroscience majors. J Undergrad Neurosci Educ 3(2):A36–A41

    Google Scholar 

  24. Hydman J, Remahl S, Bjorck G, Svensson M, Mattsson P (2007) Nimodipine improves reinnervation and neuromuscular function after injury to the recurrent laryngeal nerve in the rat. Ann Otol Rhinol Laryngol 116(8):623–630

    PubMed  Google Scholar 

  25. Himeda T, Kanbara S, Oki C, Kato H, Araki T (2005) Effects of chronic administration with nilvadipine against immunohistochemical changes related to aging in the mouse hippocampus. Metab Brain Dis 20(2):141–153

    Article  PubMed  CAS  Google Scholar 

  26. Ouardouz M, Zamponi GW, Barr W, Kiedrowski L, Stys PK (2005) Protection of ischemic rat spinal cord white matter: dual action of KB-R7943 on Na+/Ca2+ exchange and L-typeCa2+ channels. Neuropharmacology 48(4):566–575

    Article  PubMed  CAS  Google Scholar 

  27. Carlsson M, Carlsson A (1990) Interaction between glutamatergic and monoaminergic systems within the basal ganglia—implications for schizophrenia and Parkinson’s disease. Trends Neurosci 13:272–276

    Article  PubMed  CAS  Google Scholar 

  28. Bardgett ME, Wrona CT, Newcomer JW, Csernansky JG (1993) Subcortical excitatory amino acid levels after acute and subchronic administration of typical and atypical neuroleptics. Eur J Pharmacol 230:245–250

    Article  PubMed  CAS  Google Scholar 

  29. Perry TL, Hansen S, Kish SJ (1979) Effects of chronic administration of antipsychotic drugs on GABA and other amino acids in the mesolimbic area of rat brain. Life Sci 24:283–288

    Article  PubMed  CAS  Google Scholar 

  30. Olney JW (1990) Excitotoxic amino acids and neuropsychiatric disorders. Annu Rev Pharmacol Toxicol 30:47–71

    Article  PubMed  CAS  Google Scholar 

  31. Cullen PJ, Lockyer PJ (2002) Integration of calcium and ras signaling. Nat Rev Mol Cell Biol 3:339–348

    Article  PubMed  CAS  Google Scholar 

  32. Sagara Y (1998) Induction of reactive oxygen species in neurons by haloperidol. J Neurochem 71:1002–1012

    Article  PubMed  CAS  Google Scholar 

  33. Volterra A, Trotti D, Tromba C, Floridi S, Racagni G (1994) Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J Neurosci 14:2924–2932

    PubMed  CAS  Google Scholar 

  34. Burkhardt C, Kelly JP, Lim YH, Filley CM, Parker WD (1993) Neuroleptic medications inhibit complex II of the electron transport chain. Ann Neurol 33: 512–517

    Article  PubMed  CAS  Google Scholar 

  35. Jackson-Lewis V, Przedborski S (1994) Neuroleptic medications inhibit complex I of the electron transport chain. Ann Neurol 35:244–245

    Article  PubMed  CAS  Google Scholar 

  36. Simonian NA, Coyle JT (1996) Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 36:83–106

    Article  PubMed  CAS  Google Scholar 

  37. Anderson JE, Wible CG, McCarley RW, Jakab M, Kasai K et al (2002) An MRI study of temporal lobe abnormalities and negative symptoms in chronic schizophrenia. Schizophr Res 58:123–134

    Article  PubMed  Google Scholar 

  38. Burger MBE, Fachineto R, Callegari L, Paixao MW, Braga AL, Rocha JBT (2004) Effect of age on reserpine induced orofacial dyskinesia possible protection of diphenyl diselenide. Brain Res Bull 64:339–345

    Article  PubMed  CAS  Google Scholar 

  39. Schwartz PJ, Reaume A, Scott R, Coyle JT (1998) Effects of over- and under-expression of Cu, Zn-superoxide dismutase on toxicity of glutamate analogs in transgenic mouse striatum. Brain Res 789:32–39

    Article  PubMed  CAS  Google Scholar 

  40. Mukherjee S, Mahadik SP, Correnti EE, Scheffer R (1994) The antioxidant defense system at the onset of psychosis. Biol Psychiatry 35:701–708

    Google Scholar 

  41. Andreassen OA, Ferrante RJ, Aamo TO, Beal MF, Jorgensen HA (2003) Oral dyskinesias and histopathological alterations in substantia nigra after long-term haloperidol treatment of old rats. Neuroscience 122(3):717–725

    Article  PubMed  CAS  Google Scholar 

  42. Umemoto S, Tanaka M, Kawahara S, Kubo M, Umeji K, Hashimoto R, Matsuzaki M (2004) Calcium antagonist reduces oxidative stress by upregulating Cu/Zn superoxide dismutase in stroke-prone spontaneously hypertensive rats. Hypertens Res 27(11):877–885

    Article  PubMed  CAS  Google Scholar 

  43. Kouoh F, Gressier B, Dine T, Luyckx M, Brunet C, Ballester L, Cazin JC (2002) Antioxidant effects and anti-elastase activity of the calcium antagonist nicardipine on activated human and rabbit neutrophils—a potential anti-atherosclerotic property of calcium antagonists? Cardiovasc Drugs Ther 16(6):515–520

    Article  PubMed  CAS  Google Scholar 

  44. Lashgari R, Motamedi F, Zahedi Asl S, Shahidi S, Komaki A (2006) Behavioral and electrophysiological studies of chronic oral administration of L-type calcium channel blocker verapamil on learning and memory in rats. Behav Brain Res 171(2):324–328

    Article  PubMed  CAS  Google Scholar 

  45. Shivakumar BR, Ravindranath V (1993) Oxidative stress and thiol modification induced by chronic administration of haloperidol. J Pharmacol Exp Ther 3:1137–1141

    Google Scholar 

  46. Bishnoi M, Chopra K, Kulkarni SK (2006) Involvement of adenosinergic receptor system in an animal model of tardive dyskinesia and associated behavioural, biochemical and neurochemical changes. Eur J Pharmacol 552(1–3):55–66

    Article  PubMed  CAS  Google Scholar 

  47. Bishnoi M, Kumar A, Chopra K, Kulkarni SK (2007a) Comparative neurochemical changes associated with chronic administration of typical and atypical neuroleptics: implications in tardive dyskinesia. Indian J Exp Biol 45(2):175–179

    PubMed  CAS  Google Scholar 

  48. Bishnoi M, Chopra K, Kulkarni SK (2007b) Possible anti-oxidant and neuroprotective mechanisms of zolpidem in attenuating typical anti-psychotic-induced orofacial dyskinesia—a biochemical and neurochemical study. Prog Neuropsychopharmacol Biol Psychiatry 31(5):1130–1138

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by the UGC, New Delhi, grants under Centre with Potential for Excellence in Biomedical Sciences (CPEBS). Mahendra Bishnoi is a Project Associate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrinivas K. Kulkarni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bishnoi, M., Chopra, K. & Kulkarni, S.K. Protective Effect of L-type Calcium Channel Blockers Against Haloperidol-induced Orofacial Dyskinesia: A Behavioural, Biochemical and Neurochemical Study. Neurochem Res 33, 1869–1880 (2008). https://doi.org/10.1007/s11064-008-9660-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9660-6

Keywords

Navigation