Skip to main content

Advertisement

Log in

Transcription Factor GATA-3 Regulates the Transcriptional Activity of Dopamine β-Hydroxylase by Interacting with Sp1 and AP4

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

GATA-3 is a zinc finger transcription factor that is expressed in T cell lineages as well as in the nervous system during development. In this study, we report that forced expression of GATA-3 resulted in an increased number of dopamine β-hydroxylase (DBH)-expressing neurons in primary neural crest stem cell (NCSC) culture, suggesting that the DBH gene may be a downstream target gene of GATA-3. GATA-3 robustly transactivates the promoter function of the noradrenaline (NA)-synthesizing DBH gene, via two specific upstream promoter domains; one at −62 to −32 bp and the other at −891 to −853 bp. Surprisingly, none of these domains contain GATA-3 binding sites but encompass binding motifs for transcription factors Sp1 and AP4, respectively. Protein–protein interaction analyses both in vitro and in vivo and chromatin immunoprecipitation (ChIP) assays showed that GATA-3 effects its transcriptional regulatory function through physical interactions with these transcription factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anderson DJ (1999) Lineages and transcription factors in the specification of vertebrate primary sensory neurons. Curr Opin Neurobiol 9:517–524

    Article  PubMed  CAS  Google Scholar 

  2. Edlund T, Jessell TM (1999) Progression from extrinsic to intrinsic signaling in cell fate specification: a view from the nervous system. Cell 96:211–224

    Article  PubMed  CAS  Google Scholar 

  3. Goridis C, Rohrer H (2002) Specification of catecholaminergic and serotonergic neurons. Nat Rev Neurosci 3:531–541

    Article  PubMed  CAS  Google Scholar 

  4. Marquardt T, Pfaff SL (2001) Cracking the transcriptional code for cell specification in the neural tube. Cell 106:651–654

    Article  PubMed  CAS  Google Scholar 

  5. Brunet JF, Pattyn A (2002) Phox2 genes – from patterning to connectivity. Curr Opin Genet Dev 12:435–440

    Article  PubMed  CAS  Google Scholar 

  6. Goridis C, Brunet JF (1999) Transcriptional control of neurotransmitter phenotype. Curr Opin Neurobiol 9:47–53

    Article  PubMed  CAS  Google Scholar 

  7. Howard MJ, Stanke M, Schneider C, Wu X, Rohrer H (2000) The transcription factor dHAND is a downstream effector of BMPs in sympathetic neuron specification. Development 127:4073–4081

    PubMed  CAS  Google Scholar 

  8. Morikawa Y, D’Autreaux F, Gershon MD, Cserjesi P (2007) Hand2 determines the noradrenergic phenotype in the mouse sympathetic nervous system. Dev Biol 307:114–126

    Article  PubMed  CAS  Google Scholar 

  9. Morin X, Cremer H, Hirsch MR, Kapur RP, Goridis C, Brunet JF (1997) Defects in sensory and autonomic ganglia and absence of locus coeruleus in mice deficient for the homeobox gene Phox2a. Neuron 18:411–423

    Article  PubMed  CAS  Google Scholar 

  10. Ho IC, Vorhees P, Marin N, Oakley BK, Tsai SF, Orkin SH, Leiden JM (1991) Human GATA-3: a lineage-restricted transcription factor that regulates the expression of the T cell receptor alpha gene. EMBO J 10:1187–1192

    PubMed  CAS  Google Scholar 

  11. Joulin V, Bories D, Eleouet JF, Labastie MC, Chretien S, Mattei MG, Romeo PH (1991) A T-cell specific TCR delta DNA binding protein is a member of the human GATA family. EMBO J 10:809–1816

    Google Scholar 

  12. Ko LJ, Yamamoto M, Leonard MW, George KM, Ting P, Engel JD (1991) Murine and human T-lymphocyte GATA-3 factors mediate transcription through a cis-regulatory element within the human T-cell receptor delta gene enhancer. Mol Cell Biol 11:778–2784

    Google Scholar 

  13. Dong C, Flavell RA (2000) Control of T helper cell differentiation—in search of master genes. Sci STKE 2000 PE1

  14. Ho IC, Glimcher LH (2002) Transcription: tantalizing times for T cells. Cell 109(suppl):S109–S120

    Article  PubMed  CAS  Google Scholar 

  15. Murphy KM, Reiner SL (2002) The lineage decisions of helper T cells. Nat Rev Immunol 2:933–944

    Article  PubMed  CAS  Google Scholar 

  16. Pandolfi PP, Roth ME, Karis A, Leonard MW, Dzierzak E, Grosveld FG, Engel JD, Lindenbaum MH (1995) Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat Genet 11:40–44

    Article  PubMed  CAS  Google Scholar 

  17. Lim KC, Lakshmanan G, Crawford SE, Gu Y, Grosveld F, Engel JD (2000) Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nat Genet 25:9–212

    Article  CAS  Google Scholar 

  18. Moriguchi T, Takako N, Hamada M, Maeda A, Fujioka Y, Kuroha T, Huber RE, Hasegawa SL, Rao A, Yamamoto M, Takahashi S, Lim KC, Engel JD (2006) Gata3 participates in a complex transcriptional feedback network to regulate sympathoadrenal differentiation. Development 133:3871–3881

    Article  PubMed  CAS  Google Scholar 

  19. Hong SJ, Huh Y, Chae H, Hong S, Lardaro T, Kim KS (2006) GATA-3 regulates the transcriptional activity of tyrosine hydroxylase by interacting with CREB. J Neurochem 98:773–781

    Article  PubMed  CAS  Google Scholar 

  20. Hong SJ, Chae H, Kim KS (2002) Promoterless luciferase reporter gene is transactivated by basic helix-loop-helix transcription factors. Biotechniques 33:1236–1238

    PubMed  CAS  Google Scholar 

  21. Ishiguro H, Kim KT, Joh TH, Kim KS (1993) Neuron-specific expression of the human dopamine beta-hydroxylase gene requires both the cAMP-response element and a silencer region. J Biol Chem 268:17987–17994

    PubMed  CAS  Google Scholar 

  22. Kim HS, Seo H, Yang C, Brunet JF, Kim KS (1998) Noradrenergic-specific transcription of the dopamine beta-hydroxylase gene requires synergy of multiple cis-acting elements including at least two Phox2a-binding sites. J Neurosci 18:8247–8260

    PubMed  CAS  Google Scholar 

  23. Mermod N, Williams TJ, Tjian R (1988) Enhancer binding factors AP-4 and AP-1 act in concert to activate SV40 late transcription in vitro. Nature 332:557–561

    Article  PubMed  CAS  Google Scholar 

  24. Hong SJ, Kim CH, Kim KS (2001) Structural and functional characterization of the 5′ upstream promoter of the human Phox2a gene: possible direct transactivation by transcription factor Phox2b. J Neurochem 79:1225–1236

    Article  PubMed  CAS  Google Scholar 

  25. George KM, Leonard MW, Roth ME, Lieuw KH, Kioussis D, Grosveld F, Engel JD (1994) Embryonic expression and cloning of the murine GATA-3 gene. Development 120:2673–2686

    PubMed  CAS  Google Scholar 

  26. Patient RK, McGhee JD (2002) The GATA family (vertebrates and invertebrates). Curr Opin Genet Dev 12:416–422

    Article  PubMed  CAS  Google Scholar 

  27. Simon MC (1995) Gotta have GATA. Nat Genet 11:9–11

    Article  PubMed  CAS  Google Scholar 

  28. Ting CN, Olson MC, Barton KP, Leiden JM (1996) Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 384:474–478

    Article  PubMed  CAS  Google Scholar 

  29. Zheng W, Flavell RA (1997) The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89:587–596

    Article  PubMed  CAS  Google Scholar 

  30. Merika M, Orkin SH (1995) Functional synergy and physical interactions of the erythroid transcription factor GATA-1 with the Kruppel family proteins Sp1 and EKLF. Mol Cell Biol 15:2437–2447

    PubMed  CAS  Google Scholar 

  31. Guillemot F, Lo LC, Johnson JE, Auerbach A, Anderson DJ, Joyner AL (1993) Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75:463–476

    Article  PubMed  CAS  Google Scholar 

  32. Hirsch MR, Tiveron MC, Guillemot F, Brunet JF, Goridis C (1998) Control of noradrenergic differentiation and Phox2a expression by MASH1 in the central and peripheral nervous system. Development 125:599–608

    PubMed  CAS  Google Scholar 

  33. Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF (1997) Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development 124:4065–4075

    PubMed  CAS  Google Scholar 

  34. Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF (1999) The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399:66–370

    Article  Google Scholar 

  35. Flora A, Lucchetti H, Benfante R, Goridis C, Clementi F, Fornasari D (2001) Sp proteins and Phox2b regulate the expression of the human Phox2a gene. J Neurosci 21:7037–7045

    PubMed  CAS  Google Scholar 

  36. Seo H, Hong SJ, Guo S, Kim HS, Kim CH, Hwang DY, Isacson O, Rosenthal A, Kim KS (2002) A direct role of the homeodomain proteins Phox2a/2b in noradrenaline neurotransmitter identity determination. J Neurochem 80:905–916

    Article  PubMed  CAS  Google Scholar 

  37. Swanson DJ, Adachi M, Lewis EJ (2000) The homeodomain protein Arix promotes protein kinase A-dependent activation of the dopamine beta-hydroxylase promoter through multiple elements and interaction with the coactivator cAMP-response element-binding protein-binding protein. J Biol Chem 275:2911–2923

    Article  PubMed  CAS  Google Scholar 

  38. Yang C, Kim HS, Seo H, Kim CH, Brunet JF, Kim KS (1998) Paired-like homeodomain proteins, Phox2a and Phox2b, are responsible for noradrenergic cell-specific transcription of the dopamine beta-hydroxylase gene. J Neurochem 71:1813–1826

    Article  PubMed  CAS  Google Scholar 

  39. Yang C, Kim HS, Seo H, Kim KS (1998) Identification and characterization of potential cis-regulatory elements governing transcriptional activation of the rat tyrosine hydroxylase gene. J Neurochem 71:1358–1368

    PubMed  CAS  Google Scholar 

  40. Zellmer E, Zhang Z, Greco D, Rhodes J, Cassel S, Lewis EJ (1995) A homeodomain protein selectively expressed in noradrenergic tissue regulates transcription of neurotransmitter biosynthetic genes. J Neurosci 15:8109–8120

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Engel for chick GATA-3 clone, R. Ratan for the Sp1 expressing plasmids, C. Tabin for RCASBP vectors and pSlax13, and O. Andrisani for NCSC culture. This work was supported by NIH grants (MH48866 and DC006501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, S.J., Choi, H.J., Hong, S. et al. Transcription Factor GATA-3 Regulates the Transcriptional Activity of Dopamine β-Hydroxylase by Interacting with Sp1 and AP4. Neurochem Res 33, 1821–1831 (2008). https://doi.org/10.1007/s11064-008-9639-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9639-3

Keywords

Navigation