Skip to main content

Advertisement

Log in

Nicotine Leads to Improvements in Behavioral Impairment and an Increase in the Nicotine Acetylcholine Receptor in Transgenic Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Nicotine is the principal psychoactive ingredient in cigarette smoke, and has been associated with health problems in humans. However, the pure form of nicotine may prove to be a valuable pharmaceutical agent for the treatment of AD. However, the beneficial effects of nicotine remain a matter of much controversy. In order to clarify this issue, 12-month-old transgenic mice, expressing neuron-specific enolase (NSE)-controlled APPsw, were treated with low, middle, and high doses of nicotine for 6 months. Herein, we have concluded that the nicotine-treated groups evidenced improvements in behavior and increases in the nicotine acetylcholine receptor, nAchRα7. These findings provide experimental evidence that nicotine effects an improvement in impaired memory, and that this improvement is associated with an increase in nAchRα7. Thus, nicotine may prove a good preventative or therapeutic modality for AD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rockenstein EM, McConlogue L, Tan H et al (1995) Levels and alternative splicing of amyloid protein precursor (APP) transcripts in brains of APP transgenic mice and humans with Alzheimer’s Disease. J Biol Chem 270:28257–28267

    Article  PubMed  CAS  Google Scholar 

  2. Neve RL, Finch EA, Dawes LR (1988) Expression of the Alzheimer amyloid precursor gene transcripts in the human brain. Neuron 1:669–677

    Article  PubMed  CAS  Google Scholar 

  3. Tanzi RE, Wenninger JJ, Hynam BT et al (1993) Cellular specificity and regional distribution of amyloid protein precursor alternative transcripts are unaltered Alzheimer hippocampal formation. Brain Res Mol Brain Res 18:246–252

    Article  PubMed  CAS  Google Scholar 

  4. Mullan M, Houlden H, Windelspecht M et al (1992) A locus for familial early-onset alzheimer’s disease on the long arm of chromosome 14, proximal to the alpha 1-antichymotrypsin gene. Nat Genet 2:340–342

    Article  PubMed  CAS  Google Scholar 

  5. Irizarry MC, Soriana F, McNarama M et al (1997) Abeta deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mice. Neurosci 17:7053–7059

    CAS  Google Scholar 

  6. Vassar R, Bennett BD, Babu-Khan S et al (1999) beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741

    Article  PubMed  CAS  Google Scholar 

  7. Xia W, Ray WJ, Ostaszewski BL et al (2000) Presenilin complexes with the C-terminal fragments of amyloid precursor protein at the sites of amyloid beta-protein generation. Proc Natl Acad Sci USA 97:9299–9304

    Article  PubMed  CAS  Google Scholar 

  8. Andrau D, Dumanchin-Njock C, Ayral E et al (2003) BACE1- and BACE2-expressing human cells: characterization of beta-amyloid precursor protein-derived catabolites, design of a novel fluorimetric assay, and identification of new in vitro inhibitors. J Biol Chem 278:25859–25866

    Article  PubMed  CAS  Google Scholar 

  9. Lee EB, Skovronsky DM, Abtahian F et al (2003) Secretion and intracellular generation of truncated Abeta in beta-site amyloid-beta precursor protein-cleaving enzyme expressing human neurons. J Biol Chem 278:4458–4466

    Article  PubMed  CAS  Google Scholar 

  10. Kimberly WT, LaVoie MJ, Ostaszewski BL et al (2003) Gamma-Secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc Natl Acad Sci USA 100:6382–6387

    Article  PubMed  CAS  Google Scholar 

  11. Arendash GW, Sanberg PR, Sengstock GJ (1995) Nicotine enhances the learning and memory of aged rats. Pharmacol Biochem Behav 52:517–523

    Article  PubMed  CAS  Google Scholar 

  12. Socci DJ, Sanberg PR, Arendash GW (1995) Nicotine enhances Morris water maze performance of Young and aged rats. Neurobiol Aging 16:857–860

    Article  PubMed  CAS  Google Scholar 

  13. Maggio R, Riva M, Vaglini F et al (1998) Nicotine prevents expremental parkinsonism in rodents and induces striatal increase of neurotrophic factors. J Neurochem 72:2439–2446

    Google Scholar 

  14. Emilien G, Beyreuther K, Masters CL et al (2000) Prospects for pharmacological intervention in Alzheimer disease. Arch Neurol 57:454–459

    Article  PubMed  CAS  Google Scholar 

  15. White HK, Levin ED (1999) Four-week nicotine skin patch treatment effects on cognitive performance in Alzheimer’s disease. Psychopharmacology 143:158–165

    Article  PubMed  CAS  Google Scholar 

  16. Wilson AL, Langley LK, Monley J et al (1995) Nicotine patches in Alzheimer’s disease: Pilot study on learning, memory, and safety. Pharmacol Biochem Behav 51:508–514

    Article  Google Scholar 

  17. Kihara T, Shimohama S, Sawada H et al (1997) Nicotinic receptor stimulation protects neurons against beta-amyloid toxicity. Ann Neurol 42:159–163

    Article  PubMed  CAS  Google Scholar 

  18. Zamani MR, Allen YS, Owen GP et al (1997) Nicotine modulates the neurotoxic effect of beta-amyloid protein (25–35) in hippocampal cultures. Neuroreport 8:513–517

    Article  PubMed  CAS  Google Scholar 

  19. Perry E, Martin-Ruiz C, Lee M et al (2000) Nicotinic receptor subtypes in human brain ageing, Alzheimer and Lewy body diseases. Eur J Pharmacol 393:215–222

    Article  PubMed  CAS  Google Scholar 

  20. Nordberg A, Lundqvist H, Hartvig P et al (1995) Kinetic analysis of regional (S)(-)11C-nicotine binding in normal and Alzheimer brains-in vivo assessment using positron emission tomography. Alzheimers Dis Assoc Disord 9:21–27

    Article  CAS  Google Scholar 

  21. Nordberg A (2001) Nicotinic receptor abnormalities of Alzheimer’s disease: therapeutic implications. Biol Psychiatry 49:200–210

    Article  PubMed  CAS  Google Scholar 

  22. Hwang DY, Cho JS, Lee SH et al (2004) Aberrant expressions of pathogenic phenotype in Alzheimer’s diseased transgenic mice carrying NSE-controlled APPsw. Exp Neurol 186:20–32

    Article  PubMed  CAS  Google Scholar 

  23. Nordberg A, Hellstrom-Lindahl E, Lee M et al (2002) Chronic nicotine treatment reduces beta-amyloidosis in the brain of a mouse model of Alzheimer’s disease (APPsw). J Neurochem 81:655–658

    Article  PubMed  CAS  Google Scholar 

  24. Yasuji M, Melanie P, Brian M, John L et al (2001) Inflammatory response to amyloidosis in a transgenic mouse model of Alzheimers disease. Amer J Pathol 53:438–447

    Google Scholar 

  25. Gervais FG, Xu D, Robertson GS et al (1999) Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-beta precusor protein and amyloidogenic Abeta peptide formation. Cell 97:395–406

    Article  PubMed  CAS  Google Scholar 

  26. Wei W, Norton DD, Wang X et al (2002) Abeta 17–42 in Alzheimer’s disease activates JNK and caspase-8 leading to neuronal apoptosis. Brain 125:2036–2043

    Article  PubMed  Google Scholar 

  27. Hwang DY, Chae KR, Kang TS et al (2002) Alterations in behavior, amyloid beta-42, caspase-3, and Cox-2 in mutant PS2 transgenic mouse model of Alzheimer’s disease. FASEB J 16:805–813

    Article  PubMed  CAS  Google Scholar 

  28. Aubert I, Araujo DM, Cecyre D et al (1992) Comparative alterations of nicotinic and muscarinic binding sites in Alzheimer’s and Parkinson’s disease. J Neurochem 58:529–541

    Article  PubMed  CAS  Google Scholar 

  29. Flynn DD, Mash DC (1986) Charaterization of L-[3H]nicotine binding in human cerebral cortex: comparison between Alzheimer’s disease and the normal. J Neurochem 47:1948–1954

    Article  PubMed  CAS  Google Scholar 

  30. Rezvani AH, Levin ED (2001) Cognitive effects of nicotine. Biol Psychiatry 49:258–267

    Article  PubMed  CAS  Google Scholar 

  31. Newhouse PA, Potter A, Kelton M et al (2001) Nicotinic treatment of Alzheimer’s disease. Biol Psychiatry 49:268–278

    Article  PubMed  CAS  Google Scholar 

  32. Wonnacott S (1990) The paradox of nicotinic acetylcholine receptor upregulation by nicotine. Trends Pharmacol Sci 11:216–219

    Article  PubMed  CAS  Google Scholar 

  33. Ono K, Hasegawa K, Yamada M et al (2002) Nicotine breaks down preformed Alzheimer’s beta-amyloid fibrils in vitro. Biol Psychia 52:880–886

    Article  CAS  Google Scholar 

  34. Seo JH, Kim SH, Kim HS et al (2001) Effects of nicotine on APP secretion and A beta or CT105-induced toxicity. Biol Psychia 49:240–247

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Seon M. Choi, B.S. and Mee K. Jang, M.S, animal technicians, for directing the animal facility at the Division of Laboratory Animal Resources. This research was supported by grants to Dr. Yong K. Kim from the Korea Health 21 R&D project, Ministry of Health & Welfare, Republic of Korea (A040042) and the Korean FDA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong K. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shim, S.B., Lee, S.H., Chae, K.R. et al. Nicotine Leads to Improvements in Behavioral Impairment and an Increase in the Nicotine Acetylcholine Receptor in Transgenic Mice. Neurochem Res 33, 1783–1788 (2008). https://doi.org/10.1007/s11064-008-9629-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9629-5

Keywords

Navigation