Skip to main content

Advertisement

Log in

Gasping Generation in Developing Swiss–Webster Mice In Vitro and In Vivo

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

During hypoxia the respiratory network produces gasping in vivo and in vitro. To understand the mechanisms involved in such response and to validate in vitro findings, correlative studies are necessary. During perinatal age gasping generation is robust and then declines during postnatal development, possibly due to changes in either the rhythm generator (the pre-Bötzinger complex, PBC) and/or its motor outputs. We tested this hypothesis by recording respiratory response to hypoxia in vivo and in vitro during postnatal development. We found that postnatal age influences: (1) The hypoxia-induced pattern change in the PBC bursts, (2) The coupling between the PBC and the XII nucleus during prolonged hypoxia and (3) The ability of mice to gasp and autoresuscitate from hypoxic conditions. We conclude that the inability of mice to gasp during late postnatal development might be determined by a progressive uncoupling between the respiratory rhythm generator and its motor outputs in hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bureau MA, Zinman R, Foulon P, Begin R (1984) Diphasic ventilatory response to hypoxia in newborn lambs. J Appl Physiol 1:84–90

    Google Scholar 

  2. Peña F, Ramirez JM (2005) Hypoxia-induced changes in neuronal network properties. Mol Neurobiol 32:251–283

    Article  PubMed  Google Scholar 

  3. Peña F, Aguileta MA (2007) Effects of riluzole and flufenamic acid on eupnea and gasping of neonatal mice in vivo. Neurosci Lett 415:288–293

    Article  PubMed  CAS  Google Scholar 

  4. Jacobi MS, Thach BT (1989) Effect of maturation on spontaneous recovery from hypoxic apnea by gasping. J Appl Physiol 66:2384–2390

    PubMed  CAS  Google Scholar 

  5. Fewell JE, Smith FG, Ng VK, Wong VH, Wang Y (2000) Postnatal age influences the ability of rats to autoresuscitate from hypoxic-induced apnea. Am J Physiol Regul Integr Comp Physiol 279:R39–R46

    PubMed  CAS  Google Scholar 

  6. Gozal D, Gozal E, Reeves SR, Lipton AJ (2002) Gasping and autoresuscitation in the developing rat: effect of antecedent intermittent hypoxia. J Appl Physiol 92:1141–1144

    PubMed  Google Scholar 

  7. Poets CF, Meny RG, Chobanian MR, Bonofiglo RE (1999) Gasping and other cardiorespiratory patterns during sudden infant deaths. Pediatr Res 45:350–354

    Article  PubMed  CAS  Google Scholar 

  8. Sridhar R, Thach BT, Kelly DH, Henslee JA (2003) Characterization of successful and failed autoresuscitation in human infants, including those dying of SIDS. Pediatr Pulmonol 36:113–122

    Article  PubMed  Google Scholar 

  9. Lieske SP, Thoby-Brisson M, Telgkamp P, Ramirez JM (2000) Reconfiguration of the neural network controlling multiple breathing patterns: eupnea, sighs and gasps. Nat Neurosci 6:600–607

    Google Scholar 

  10. Peña F, Parkis MA, Tryba AK, Ramirez JM (2004) Differential contribution of pacemaker properties to the generation of respiratory rhythms during normoxia and hypoxia. Neuron 43:105–117

    Article  PubMed  Google Scholar 

  11. Tryba AK, Peña F, Ramirez JM (2006) Gasping activity in vitro: a rhythm dependent on 5-HT2A receptors. J Neurosci 26:2623–2634

    Article  PubMed  CAS  Google Scholar 

  12. Ramirez JM, Quellmalz UJ, Richter DW (1996) Postnatal changes in the mammalian respiratory network as revealed by the transverse brainstem slice of mice. J Physiol 491:799–812

    PubMed  CAS  Google Scholar 

  13. Gershan WM, Jacobi MS, Thach BT (1992) Mechanisms underlying induced autoresuscitation failure in BALB/c and SWR mice. J Appl Physiol 72:677–685

    PubMed  CAS  Google Scholar 

  14. Deshpande P, Khurana A, Hansen P, Wilkins D, Thach BT (1999) Failure of autoresuscitation in weanling mice: significance of cardiac glycogen and heart rate regulation. J Appl Physiol 87:203–210

    PubMed  CAS  Google Scholar 

  15. Peña F, Ramirez JM (2002) Endogenous activation of serotonin-2A receptors is required for respiratory rhythm generation in vitro. J Neurosci 22:11055–11064

    PubMed  Google Scholar 

  16. Peña F, Ramirez JM (2004) Substance P-mediated modulation of pacemaker properties in the mammalian respiratory network. J Neurosci 24:7549–7556

    Article  PubMed  CAS  Google Scholar 

  17. Lemus-Aguilar I, Bargas J, Tecuapetla F, Galárraga E, Carrillo-Reid L (2006) Diseño modular de instrumentación virtual para la manipulación y el análisis de señales electrofisiológicas. Rev Mex Ing Biomed 27:82–92

    Google Scholar 

  18. Telgkamp P, Ramirez JM (1999) Differential responses of respiratory nuclei to anoxia in rhythmic brain stem slices of mice. J Neurophysiol 82:2163–2170

    PubMed  CAS  Google Scholar 

  19. Donnelly DF, Jiang C, Haddad GG (1992) Comparative responses of brain stem and hippocampal neurons to O2 deprivation: in vitro intracellular studies. Am J Physiol 262:L549–L554

    PubMed  CAS  Google Scholar 

  20. Ballanyi K, Doutheil J, Brockhaus J (1996) Membrane potentials and microenvironment of rat dorsal vagal cells in vitro during energy depletion. J Physiol 495:769–784

    PubMed  CAS  Google Scholar 

  21. Richter DW, Bischoff A, Anders K, Bellingham M, Windhorst U (1991) Response of the medullary respiratory network of the cat to hypoxia. J Physiol 443:231–256

    PubMed  CAS  Google Scholar 

  22. Ballanyi K, Volker A, Richter DW (1994) Anoxia induced functional inactivation of neonatal respiratory neurones in vitro. Neuroreport 6:165–168

    Article  PubMed  CAS  Google Scholar 

  23. Ballanyi K, Volker A, Richter DW (1996) Functional relevance of anaerobic metabolism in the isolated respiratory network of newborn rats. Pflugers Arch 432:741–748

    Article  PubMed  CAS  Google Scholar 

  24. Pierrefiche O, Bischoff AM, Richter DW, Spyer KM (1997) Hypoxic response of hypoglossal motoneurones in the in vivo cat. J Physiol 505:785–795

    Article  PubMed  CAS  Google Scholar 

  25. Smith JC, Goldberg SJ, Shall MS (2005) Phenotype and contractile properties of mammalian tongue muscles innervated by the hypoglossal nerve. Respir Physiol Neurobiol 147:253–262

    Article  PubMed  CAS  Google Scholar 

  26. Yamada Y, Yamamura K, Inoue M (2005) Coordination of cranial motoneurons during mastication. Respir Physiol Neurobiol 147:177–189

    Article  PubMed  Google Scholar 

  27. Miller AJ (2002) Oral and pharyngeal reflexes in the mammalian nervous system: their diverse range in complexity and the pivotal role of the tongue. Crit Rev Oral Biol Med 13:409–425

    Article  PubMed  CAS  Google Scholar 

  28. Horner RL (2007) Respiratory motor activity: influence of neuromodulators and implications for sleep disordered breathing. Can J Physiol Pharmacol 85:155–165

    Article  PubMed  CAS  Google Scholar 

  29. Ottaviani G, Matturri L, Mingrone R, Lavezzi AM (2006) Hypoplasia and neuronal immaturity of the hypoglossal nucleus in sudden infant death. J Clin Pathol 59:497–500

    Article  PubMed  CAS  Google Scholar 

  30. Peña F, Garcia O (2006) Breathing generation and potential pharmacotherapeutic approaches to central respiratory disorders. Curr Med Chem 13:2681–2693

    Article  PubMed  Google Scholar 

  31. Saito Y, Ezure K, Tanaka I (2002) Difference between hypoglossal and phrenic activities during lung inflation and swallowing in the rat. J Physiol 544:183–193

    Article  PubMed  CAS  Google Scholar 

  32. Leiter JC, St-John WM (2004) Phrenic, vagal and hypoglossal activities in rat: pre-inspiratory, inspiratory, expiratory components. Respir Physiol Neurobiol 142:115–126

    Article  PubMed  CAS  Google Scholar 

  33. Bubnaitiene V, Kalediene R, Kevalas R (2005) Case–control study of sudden infant death syndrome in Lithuania, 1997–2000. BMC Pediatr 13:5–41

    Google Scholar 

  34. Eisele DW, Schwartz AR, Smith PL (2003) Tongue neuromuscular and direct hypoglossal nerve stimulation for obstructive sleep apnea. Otolaryngol Clin North Am 36:501–510

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants from Conacyt 42870, 46161 and 59187. We would like to thank Josué Ramirez-Jarquín who contributed with some initial experiments. We also like to thank Miguel Angel Aguileta and Benito Ordaz for reviewing the manuscript and Juan Javier López Guerrero, Arturo Franco and José Rodolfo Fernández for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Peña.

Additional information

Special issue article in honor of Dr. Ricardo Tapia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peña, F., Meza-Andrade, R., Páez-Zayas, V. et al. Gasping Generation in Developing Swiss–Webster Mice In Vitro and In Vivo. Neurochem Res 33, 1492–1500 (2008). https://doi.org/10.1007/s11064-008-9616-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9616-x

Keywords

Navigation