Advertisement

Neurochemical Research

, Volume 33, Issue 7, pp 1224–1231 | Cite as

Altered Dopamine Receptor and Dopamine Transporter Binding and Tyrosine Hydroxylase mRNA Expression Following Perinatal NMDA Receptor Blockade

  • Teresa Marie du Bois
  • Ching-Wen Hsu
  • Yulin Li
  • Yean Yeow Tan
  • Chao Deng
  • Xu-Feng Huang
Original Paper

Abstract

This study examined how perinatal phencyclidine (PCP) treatment would affect dopamine D2 receptor and dopamine transporter (DAT) binding at different stages after treatment cessation. Female rat pups received injections of PCP (10 mg/kg, s.c.) or saline on postnatal day (PN)7, 9 and 11. D2 receptor and transporter binding was examined at four time-points (PN12, 18, 32 and 96) following injections. PCP treatment altered D2 receptor binding throughout development, with a final end-point of 22–33% decreased binding at adulthood in the nucleus accumbens and caudate putamen (P < 0.01), accompanied by a small but significant increase in DAT binding in the caudate putamen. Tyrosine hydroxylase mRNA expression was also significantly increased by 25% (P < 0.05) in the ventral tegmental area of adult rats, suggesting that this model may produce a long-term increase in dopamine output. This study demonstrates that early insult to the brain from NMDA receptor hypofunction alters the dopaminergic system at different stages of development.

Keywords

Brain development NMDA receptor Phencyclidine Dopaminergic system 

Notes

Acknowledgements

This work was supported by the Schizophrenia Research Institute (SRI) Australia, utilizing infrastructure from New South Wales Health.

References

  1. 1.
    Ikonomidou C, Bosch F, Miksa M et al (1999) Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 283:70–74PubMedCrossRefGoogle Scholar
  2. 2.
    Fredriksson A, Archer T, Alm H et al (2004) Neurofunctional deficits and potentiated apoptosis by neonatal NMDA antagonist administration. Behav Brain Res 153:367–376PubMedCrossRefGoogle Scholar
  3. 3.
    Hansen HH, Briem T, Dzietko M et al (2004) Mechanisms leading to disseminated apoptosis following NMDA receptor blockade in the developing rat brain. Neurobiol Dis 16:440–453PubMedCrossRefGoogle Scholar
  4. 4.
    Harris LW, Sharp T, Gartlon J et al (2003) Long-term behavioural, molecular and morphological effects of neonatal NMDA receptor antagonism. Eur J Neurosci 18:1706–1710PubMedCrossRefGoogle Scholar
  5. 5.
    Hwang J-Y, Kim Y-H, Ahn Y-H et al (1999) N-methyl-aspartate receptor blockade induces neuronal apoptosis in cortical culture. Exp Neurol 159:124–130PubMedCrossRefGoogle Scholar
  6. 6.
    Monti B, Contestabile A (2000) Blockade of the NMDA receptor increases developmental apoptotic elimination of granule neurons and activates caspases in the rat cerebellum. Eur J Neurosci 12:3117–3123PubMedCrossRefGoogle Scholar
  7. 7.
    Wang C, McInnis J, Ross-Sanchez M et al (2001) Long-term behavioral and neurodegenerative effects of perinatal phencyclidine administration: implications for schizophrenia. Neuroscience 107:535–550PubMedCrossRefGoogle Scholar
  8. 8.
    Olney JW, Labruyere J, Wang G et al (1991) NMDA antagonist neurotoxicity: mechanism and prevention. Science 254:1515–1518PubMedCrossRefGoogle Scholar
  9. 9.
    Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3:79–83PubMedCrossRefGoogle Scholar
  10. 10.
    Brooks WJ, Weeks AC, Leboutillier JC et al (1997) Altered NMDA sensitivity and learning following chronic developmental NMDA antagonism. Physiol Behav 62:955–962PubMedCrossRefGoogle Scholar
  11. 11.
    Latysheva NV, Rayevsky KS (2003) Chronic neonatal N-methyl-aspartate receptor blockade induces learning deficits and transient hypoactivity in young rats. Prog Neuropsychopharmacol Biol Psychiatry 27:787–794PubMedCrossRefGoogle Scholar
  12. 12.
    Sircar R (2003) Postnatal phencyclidine-induced deficit in adult water maze performance is associated with N-methyl-aspartate receptor upregulation. Int J Dev Neurosci 21:159–167PubMedCrossRefGoogle Scholar
  13. 13.
    Wiley JL, Buhler KG, Lavecchia KL et al (2003) Pharmacological challenge reveals long-term effects of perinatal phencyclidine on delayed spatial alternation in rats. Prog Neuropsychopharmacol Biol Psychiatry 27:867–873PubMedCrossRefGoogle Scholar
  14. 14.
    Facchinetti F, Ciani E, Dall’Olio R et al (1993) Structural, neurochemical and behavioural consequences of neonatal blockade of NMDA receptor through chronic treatment with CGP 39551 or MK-801. Dev Brain Res 74:219–224CrossRefGoogle Scholar
  15. 15.
    Wang C, McInnis J, West JB et al (2003) Blockade of phencyclidine-induced cortical apoptosis and deficits in prepulse inhibition by M40403, a superoxide dismutase mimetic. J Pharmacol Exp Ther 304:266–271PubMedCrossRefGoogle Scholar
  16. 16.
    Boksa P, El-Khodor BF (2003) Birth insult interacts with stress at adulthood to alter dopaminergic function in animal models: possible implications for schizophrenia and other disorders. Neurosci Biobehav Rev 27:91–101PubMedCrossRefGoogle Scholar
  17. 17.
    Davis KL, Kahn RS, Ko G et al (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 148:1474–1486PubMedGoogle Scholar
  18. 18.
    Lacroix L, Spinelli S, White W et al (2000) The effects of ibotenic acid lesions of the medial and lateral prefrontal cortex on latent inhibition, prepulse inhibition and amphetamine-induced hyperlocomotion. Neuroscience 97:459–468PubMedCrossRefGoogle Scholar
  19. 19.
    Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press Inc., LondonGoogle Scholar
  20. 20.
    Siemiatkowski M, Maciejak P, Wislowska A et al (2004) Neophobia and cortical and subcortical binding of the dopamine D2 receptor antagonist [3H]-raclopride. Life Sci 76:753–761PubMedCrossRefGoogle Scholar
  21. 21.
    Isovich E, Mijnster MJ, Flugge G et al (2000) Chronic psychosocial stress reduces the density of dopamine transporters. Eur J Neurosci 12:1071–1078PubMedCrossRefGoogle Scholar
  22. 22.
    Hu Z, Cooper M, Crockett DP et al (2004) Differentiation of the midbrain dopaminergic pathways during mouse development. J Comp Neurol 476:301–311PubMedCrossRefGoogle Scholar
  23. 23.
    Tarazi FI, Florijn WJ, Creese I (1996) Regulation of ionotropic glutamate receptors following subchronic and chronic treatment with typical and atypical antipsychotics. Psychopharmacology 128:371–379PubMedCrossRefGoogle Scholar
  24. 24.
    Teicher MH, Andersen SL, Hostetter JC (1995) Evidence for dopamine-receptor pruning between adolescence and adulthood in striatum but not nucleus-accumbens. Brain Res Dev Brain Res 89:167–172PubMedCrossRefGoogle Scholar
  25. 25.
    Andersen SL, Rutstein M, Benzo JM et al (1997) Sex differences in dopamine receptor overproduction and elimination. Neuroreport 8:1495–1498PubMedCrossRefGoogle Scholar
  26. 26.
    Gelbard HA, Teicher MH, Faedda JG et al (1989) Postnatal development of dopamine D1 and D2 receptor sites in rat striatum. Brain Res 49:123–130CrossRefGoogle Scholar
  27. 27.
    Deng C, Eftimovska J, Zavitsanou K et al. (2007) Phencyclidine induces apoptosis in the brain of neonatal but not adolescent and adult rats. 7th IBRO World Congress of Neuroscience, Melbourne, AustraliaGoogle Scholar
  28. 28.
    Changeux JP, Danchin A (1976) Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature 264:705–712PubMedCrossRefGoogle Scholar
  29. 29.
    Pearce IA, Cambray-Deakin MA, Burgoyne RD (1987) Glutamate acting on NMDA receptors stimulates neurite outgrowth from cerebellar granule cells. FEBS Lett 223:143–147PubMedCrossRefGoogle Scholar
  30. 30.
    Sircar R, Soliman KFA (2003) Effects of postnatal PCP treatment on locomotor behavior and striatal D2 receptor. Pharmacol Biochem Behav 74:943–952PubMedCrossRefGoogle Scholar
  31. 31.
    Gorter JA, Botterblom MH, Feenstra MG et al (1992) Chronic neonatal NMDA receptor blockade with MK-801 alters monoamine metabolism in the adult rat. Neurosci Lett 137:97–100PubMedCrossRefGoogle Scholar
  32. 32.
    Dall’Olio R, Facchinetti F, Contestabile A et al (1994) Chronic neonatal blockade of N-methyl-D-Aspartate receptor by CGP 39551 increases dopaminergic function in adult rat. Neuroscience 63:451–455PubMedCrossRefGoogle Scholar
  33. 33.
    Ciliax BJ, Drash GW, Staley JK et al (1999) Immunocytochemical localization of the dopamine transporter in human brain. J Comp Neurol 409:38–56PubMedCrossRefGoogle Scholar
  34. 34.
    Coulter CL, Happe HK, Murrin LC (1997) Dopamine transporter development in postnatal rat striatum, an autoradiographic study with H-3 WIN 35,428. Brain Res Dev Brain Res 104:55–62PubMedCrossRefGoogle Scholar
  35. 35.
    González-Hernández T, Barroso-Chinea P, de la Cruz Muros I et al (2004) Expression of dopamine and vesicular monoamine transporters and differential vulnerability of mesostriatal dopaminergic neurons. J Comp Neurol 479:198–215PubMedCrossRefGoogle Scholar
  36. 36.
    Gulley JM, Zahniser NR (2003) Rapid regulation of dopamine transporter function by substrates, blockers and presynaptic receptor ligands. Eur J Pharmacol 479:139–152PubMedCrossRefGoogle Scholar
  37. 37.
    Jones SR, Gainetdinov RR, Jaber M et al (1998) Profound neuronal plasticity in response to inactivation of the dopamine transporter. PNAS 95:4029–4034PubMedCrossRefGoogle Scholar
  38. 38.
    Jones SR, Gainetdinov RR, Wightman RM et al (1998) Mechanisms of amphetamine action revealed in mice lacking the dopamine transporter. J Neurosci 18:1979–1986PubMedGoogle Scholar
  39. 39.
    Jones SR, Gainetdinov RR, Hu X-T et al (1999) Loss of autoreceptor functions in mice lacking the dopamine transporter. Nat Neurosci 2:649–655PubMedCrossRefGoogle Scholar
  40. 40.
    Joyce J, Woolsey C, Ryoo H et al (2004) Low dose pramipexole is neuroprotective in the MPTP mouse model of Parkinson’s disease, and downregulates the dopamine transporter via the D3 receptor. BMC Biol 2:22PubMedCrossRefGoogle Scholar
  41. 41.
    Zahniser NR, Doolen S (2001) Chronic and acute regulation of Na+/Cl-dependent neurotransmitter transporters: drugs, substrates, presynaptic receptors, and signaling systems. Pharmacol Ther 92:21–55PubMedCrossRefGoogle Scholar
  42. 42.
    Ikawa K, Watanabe A, Kaneno S et al (1993) Modulation of [3H]mazindol binding sites in rat striatum by dopaminergic agents. Eur J Pharmacol 250:261–266PubMedCrossRefGoogle Scholar
  43. 43.
    Gordon I, Weizman R, Rehavi M (1996) Modulatory effect of agents active in the presynaptic dopaminergic system on the striatal dopamine transporter. Eur J Pharmacol 298:27–30PubMedCrossRefGoogle Scholar
  44. 44.
    Adams B, Moghaddam B (1998) Corticolimbic dopamine neurotransmission is temporally dissociated from the cognitive and locomotor effects of phencyclidine. J Neurosci 18:5545–5554PubMedGoogle Scholar
  45. 45.
    du Bois TM, Huang XF, Deng C (2007) Perinatal administration of PCP alters adult behaviour in female Sprague-Dawley rats. Behav Brain Res. doi: 10.1016/j.bbr.2007.11.017
  46. 46.
    Seeman P, Weinshenker D, Quirion R et al (2005) Dopamine supersensitivity correlates with D2High states, implying many paths to psychosis. PNAS 102:3513–3518PubMedCrossRefGoogle Scholar
  47. 47.
    Hietala J, Syvalahti E, Vilkman H et al (1999) Depressive symptoms and presynaptic dopamine function in neuroleptic-naive schizophrenia. Schizophr Res 35:41–50PubMedCrossRefGoogle Scholar
  48. 48.
    Hietala J, Syvalahti E, Vuorio K et al (1995) Presynaptic dopamine function in striatum of neuroleptic-naive schizophrenic patients. Lancet 346:1130PubMedCrossRefGoogle Scholar
  49. 49.
    Lindstrom LH, Gefvert O, Hagberg G et al (1999) Increased dopamine synthesis rate in medial prefrontal cortex and striatum in schizophrenia indicated by -([beta]-11C) DOPA and PET. Biol Psychiatry 46:681–688PubMedCrossRefGoogle Scholar
  50. 50.
    Reith J, Benkelfat C, Sherwin A et al (1994) Elevated dopa decarboxylase activity in living brain of patients with psychosis. PNAS 91:11651–11654PubMedCrossRefGoogle Scholar
  51. 51.
    Abi-Dargham A, Rodenhiser J, Printz D et al (2000) Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. PNAS 97:8104–8109PubMedCrossRefGoogle Scholar
  52. 52.
    Abi-Dargham A, Gil R, Krystal J et al (1998) Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry 155:761–767PubMedGoogle Scholar
  53. 53.
    Breier A, Su TP, Saunders R et al (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. PNAS 94:2569–2574PubMedCrossRefGoogle Scholar
  54. 54.
    Laruelle M, Abi-Dargham A, van Dyck CH et al (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. PNAS 93:9235–9240PubMedCrossRefGoogle Scholar
  55. 55.
    Silvestri S, Seeman MV, Negrete JC et al (2000) Increased dopamine D2 receptor binding after long-term treatment with antipsychotics in humans: a clinical PET study. Psychopharmacology 152:174–180PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Teresa Marie du Bois
    • 1
    • 2
  • Ching-Wen Hsu
    • 1
    • 2
  • Yulin Li
    • 2
  • Yean Yeow Tan
    • 1
    • 2
  • Chao Deng
    • 1
    • 2
  • Xu-Feng Huang
    • 1
    • 2
  1. 1.Schizophrenia Research Institute (SRI)SydneyAustralia
  2. 2.Centre for Translational Neuroscience, School of Health SciencesUniversity of WollongongWollongongAustralia

Personalised recommendations