Skip to main content
Log in

Effect of Hypoxia on Expression of Apoptotic Proteins in Nuclear, Mitochondrial and Cytosolic Fractions of the Cerebral Cortex of Newborn Piglets: The Role of Nuclear Ca++-influx

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We have shown that hypoxia results in increased influx of nuclear Ca++ and increased expression of nuclear apoptotic proteins. The present study tests the hypothesis that hypoxia alters the distribution of pro-apoptotic proteins Bad and Bax, and the anti-apoptotic proteins Bcl-xl, and Bcl-2 in the nuclear, mitochondrial and cytosolic compartments of the cerebral cortex of newborn piglets and the administration of Clonidine, an inhibitor of high affinity nuclear Ca++-ATPase, will prevent the hypoxia-induced increase in apoptotic proteins’ expression. Studies were conducted in 19 newborn piglets, 6 normoxic (Nx), 7 hypoxic and 6 Clonidine-treated hypoxic (Hx-Clo). Tissue hypoxia was documented biochemically by measuring cerebral tissue ATP and phosphocreatine (PCr) levels. Bax and Bad protein expression increased in all the three compartments during hypoxia, while there was no significant change in the expression of anti-apoptotic proteins Bcl-2 and Bcl-xl. In Clonidine pretreated hypoxic group, the hypoxia-induced increased expression of pro-apoptotic proteins Bad and Bax was prevented in all the three fractions. We conclude that hypoxia results in increased expression of pro-apoptotic proteins in nuclear, mitochondrial and cytosolic compartments and that the increased expression of pro-apoptotic proteins during hypoxia is nuclear Ca++-influx-dependent. We propose that during hypoxia the increased ratio of (pro-apoptotic Bad and Bax/anti-apoptotic Bcl-xl and Bcl-2) in all the three compartments, will lead to altered mitochondrial and nuclear membrane permeability as well as caspase-9 activation in the cytosolic compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326

    Article  PubMed  CAS  Google Scholar 

  2. Makin G, Dive C (2001) Apoptosis and cancer chemotherapy. Trends Cell Biol 11:S22–S26

    PubMed  CAS  Google Scholar 

  3. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  4. Zamzami N, Kroemer G (2001) The mitochondrion in apoptosis: how Pandora’s box opens. Nat Rev Mol Cell Biol 2:67–71

    Article  PubMed  CAS  Google Scholar 

  5. Banasiak KJ, Xia Y, Haddad GG (2000) Mechanisms underlying hypoxia-induced neuronal apoptosis. Prog Neurobiol 62:215–249

    Article  PubMed  CAS  Google Scholar 

  6. Aoyagi A, Saito H, Abe K, Nishiyama N (1998) Early impairment and late recovery of synaptic transmission in the rat dentate gyrus following transient forebrain ischemia in vivo. Brain Res 799:130–137

    Article  PubMed  CAS  Google Scholar 

  7. Fleidervish I, Gebhardt C, Astman N, Gutnick MJ, Heinemann U (2001) Enhanced spontaneous transmitter release is the earliest consequence of neocortical hypoxia that can explain the disruption of normal circuit function. J Neurosci 21:4600–4608

    PubMed  CAS  Google Scholar 

  8. Lee J-M, Zipfel GJ, Choi DW (1999) The changing landscape of ischaemic brain injury mechanisms. Nature 399(Suppl 6738):A7–A14

    PubMed  CAS  Google Scholar 

  9. Sattler R, Tymianski M (2000) Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med 78:3–13

    Article  PubMed  CAS  Google Scholar 

  10. Sugawara T, Fujimura M, Morita-Fujimura Y, Kawase M, Chan PH (1999) Mitochondrial release of cytochrome c corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia. J Neurosci 19:RC38–RC45

    Google Scholar 

  11. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136

    Article  PubMed  CAS  Google Scholar 

  12. Schendel SL, Montal M, Reed JC (1998) Bcl-2 family proteins as ion-channels. Cell Death Differ 5:372–380

    Article  PubMed  CAS  Google Scholar 

  13. Jonas EA, Hoit D, Hickman JA, Zhang J, Brandt TA, Yin D, Ivanovska I, Fannjiang Y, McCarthy E, Hardwick JM, Kaczmarek LK (2003) Modulation of synaptic transmission by the BCL-2 family protein BCL-xL. J Neurosci 23:8423–8431

    PubMed  CAS  Google Scholar 

  14. Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47

    Article  PubMed  CAS  Google Scholar 

  15. Huang DC, Strasser A (2000) BH3-Only proteins—essential initiators of apoptotic cell death. Cell 103:839–842

    Article  PubMed  CAS  Google Scholar 

  16. Oppenheim RW (1991) Cell death during development of the nervous system. Annu Rev Neurosci 14:453–501

    Article  PubMed  CAS  Google Scholar 

  17. Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y, Jacobson MD (1993) Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262:695–700

    Article  PubMed  CAS  Google Scholar 

  18. Hengartner MO, Horvitz HR (1994) C. elegans cell survival gene ced-9 encodes a functional homologue of the mammalian proto-oncogene bcl-2. Cell 76:665–676

    Article  PubMed  CAS  Google Scholar 

  19. White E (1996) Life, death, and the pursuit of apoptosis. Genes Dev 10:1–15

    Article  PubMed  CAS  Google Scholar 

  20. Bakhshi A, Jensen JP, Goldman P, Wright JJ, McBride OW, Epstein AL, Korsmeyer SJ (1985) Loning and chromosomal breakpoint of t (14; 18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit of 18. Cell 41:899–906

    Article  PubMed  CAS  Google Scholar 

  21. Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson CB (1993) Bcl-x, a bcl-2 -related gene that functions as a dominant regulator of apoptotic cell death. Cell 74:597–608

    Article  PubMed  CAS  Google Scholar 

  22. Oltvai ZN, Milliman CM, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog Bax, that accelerates programmed cell death. Cell 74:609–619

    Article  PubMed  CAS  Google Scholar 

  23. Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ (1995) Bad, a heterodimeric partner for Bcl-xL and Bcl-2, displaces Bax and promotes cell death. Cell 80:285–291

    Article  PubMed  CAS  Google Scholar 

  24. Korsmeyer SJ (1995) Regulators of cell death. Trends Genet 11:101–105

    Article  PubMed  CAS  Google Scholar 

  25. Reed JC (1997) Double identity for proteins of the Bcl-2 family. Nature 387:773–776

    Article  PubMed  CAS  Google Scholar 

  26. Allsopp TE, Wyatt S, Paterson HF, Davies AM (1993) The proto-oncogene bcl-2 can selectively rescue neurotrophic factor-dependent neurons from apoptosis. Cell 73:295–307

    Article  PubMed  CAS  Google Scholar 

  27. Frankowski H, Misotten M, Fernandez PA, Martinou I, Michel P, Sadoul R, Martinou JC (1995) Function and expression of the Bcl-x gene in the developing and adult nervous system. Neuro Rep 6:1917–1921

    CAS  Google Scholar 

  28. Farrow SN, White JHM, Martinou I, Raven T, Pun KT, Grinham CJ, Martinou JC, Brown R (1995) Cloning of a bcl-2 homologue by interaction with adenovirus. E1B 19 K Nature 374:731–733

    Article  CAS  Google Scholar 

  29. Easton RM, Deckwerth TL, Parsadanian AS, Johnson EMJ (1997) Analysis of the mechanism of loss of trophic factor dependence associated with neuronal maturation: a phenotype indistinguishable from BAX deletion. J Neurosci 17:9656–9666

    PubMed  CAS  Google Scholar 

  30. Krajewski S, Krajewska M, Shabaik A, Miyashita T, Wang HG, Reed JC (1994) Immunohistochemical determination of in vivo distribution of Bax, a dominant inhibitor of Bcl2. Am J Pathol 145:1323–1336

    PubMed  CAS  Google Scholar 

  31. Parsadanian AS, Elliott JL, Snider WD (1995) Multiple Ced-3 and Ced-9 homologues are expressed in the murine nervous system. Soc Neurosci Abstr 21:2019

    Google Scholar 

  32. Dubois-Dauphin M, Frankowski H, Tsujimoto Y, Huarte J, Martinou JC (1994) Neonatal motoneurons overexpressing the bcl-2 proto-oncogene in transgenic mice are protected from axotomy-induced cell death. Proc Natl Acad Sci USA 91:3309–3313

    Article  PubMed  CAS  Google Scholar 

  33. Martinou JC, Dubois-Dauphin M, Staple JK, Rodriquez I, Frankowski H, Missotten M, Albertini P, Talabot D, Catsicas S, Pietra C, Huarte J (1994) Over expression of Bcl-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13:1017–1030

    Article  PubMed  CAS  Google Scholar 

  34. Farlie PG, Dringen R, Rees SM, Kannourakis G, Bernard O (1995) Bcl-2 transgene expression can protect neurons against developmental and induced cell death. Proc Natl Acad Sci USA 92:4397–4401

    Article  PubMed  CAS  Google Scholar 

  35. Delivoria-Papadopoulos M, Akhter WA, Mishra OP (2003) Hypoxia-induced Ca++-influx in cerebral cortical neuronal nuclei of newborn piglets. Neurosci Lett 342:119–123

    Article  PubMed  CAS  Google Scholar 

  36. Mishra OP, Ashraf QM, Delivoria-Papadopoulos M (2002) Phosphorylation of cAMP response element binding (CREB) protein during hypoxia in cerebral cortex of newborn piglets and the effect of nitric oxide synthase inhibition. Neuroscience 115:985–991

    Article  PubMed  CAS  Google Scholar 

  37. Hornick K, Chang E, Zubrow AB, Mishra OP, Delivoria-Papadopoulos M (2007) Mechanism of Ca(2+)/calmodulin-dependent protein kinase IV activation and of cyclic AMP response element binding protein phosphorylation during hypoxia in the cerebral cortex of newborn piglets. Brain Res 1150:40–45

    Article  PubMed  CAS  Google Scholar 

  38. Zubrow AB, Delivoria-Papadopoulos M, Ashraf QM, Fritz KI, Mishra OP (2002) Nitric oxide-mediated Ca2+/calmodulin-dependent protein kinase IV activity during hypoxia in neuronal nuclei from newborn piglets. Neurosci Lett 335:5–8

    Article  PubMed  CAS  Google Scholar 

  39. Timmons SD, Geisert E, Stewart AE, Lorenzon NM, Foehring RC (2004) Alpha2-adrenergic receptor-mediated modulation of calcium current in neocortical pyramidal neurons. Brain Res 1014:184–196

    Article  PubMed  CAS  Google Scholar 

  40. Wang WZ, Yuan WJ, Pan YX, Tang CS, Su DF (2004) Interaction between clonidine and N-methyl-d-aspartate receptors in the caudal ventrolateral medulla of rats. Exp Brain Res 158:259–264

    Article  PubMed  CAS  Google Scholar 

  41. Gorini A, Villa RF (2001) Effect of in vivo treatment of clonidine on ATP-ase’s enzyme systems of synaptic plasma membranes from rat cerebral cortex. Neurochem Res 26:821–827

    Article  PubMed  CAS  Google Scholar 

  42. Dickerson JW, Dobbing J (1966) Some peculiarities of cerebellar growth in pigs. Proc R Soc Med 59:1088

    PubMed  CAS  Google Scholar 

  43. Lamprecht W, Stein P, Heinz F, Weissner H (1974) Creatine phosphate In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 4. Academic Press, New York, pp 1777–1781

    Google Scholar 

  44. Giuffrida AM, Cox D, Mathias AP (1975) RNA polymerase in various classes of nuclei from different regions of rat brain during postnatal development. J Neurochem 24:749–755

    CAS  Google Scholar 

  45. Lowry O, Rosenbrough NJ, Farr A, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  46. Booth RF, Clark JB (1978) A rapid method for the preparation of relatively pure metabolically competent synaptosomes from rat brain. Biochem J 176(2):365–370

    PubMed  CAS  Google Scholar 

  47. Chen J, Zhu RL, Nakayama M, Kawaguchi K, Jin K, Stetler RA, Simon RP, Graham SH (1996) Expression of the apoptosis-effector gene, Bax, is up-regulated in vulnerable hippocampal CA1 neurons following global ischemia. J Neurochem 67:64–71

    Article  PubMed  CAS  Google Scholar 

  48. Mishra OP, Delivoria-Papadopoulos M (1999) Cellular mechanisms of hypoxic injury in the developing brain. Brain Res Bull 48:233–238

    Article  PubMed  CAS  Google Scholar 

  49. Zanelli SA, Numagami Y, McGowan JE, Mishra OP, Delivoria-Papadopoulos M (1999) NMDA receptor-mediated calcium influx in cerebral cortical synaptosomes of the hypoxic guinea pig fetus. Neurochem Res 24:437–446

    Article  PubMed  CAS  Google Scholar 

  50. Christopherson KS, Bredt DS (1997) Nitric oxide in excitable tissues: physiologic roles and disease. J Clin Invest 100:2424–2429

    Article  PubMed  CAS  Google Scholar 

  51. Bredt DS, Snyder SH (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci 87:682–685

    Article  PubMed  CAS  Google Scholar 

  52. Mishra OP, Zanelli S, Ohnishi ST, Delivoria-Papadopoulos M (2000) Hypoxia-induced generalization of nitric oxide free radicals in cerebral cortex of newborn guinea pigs. Neurochem Res 25:1559–1565

    Article  PubMed  CAS  Google Scholar 

  53. Mishra OP, Delivoria-Papadooulos M (2001) Effect of graded hypoxia on high affinity Ca++-ATPase activity in cortical neuronal nuclei of newborn piglets. Neurochem Res 26:1335–1341

    Article  PubMed  CAS  Google Scholar 

  54. Merry ME, Veis DJ, Hickey WF, Korsmeyer SJ (1994) Bcl-2 protein expression is widespread in the developing nervous system and retained in the adult. PNS Dev 120:301–311

    CAS  Google Scholar 

  55. Reed JC (1996) Mechanisms of Bcl-2 family protein function and dysfunction in health and disease. Behring-Inst-Mitt 97:72–100

    PubMed  CAS  Google Scholar 

  56. Akhter WA, Ashraf QM, Zanelli SA, Mishra OP, Delivoria-Papadopoulos M (2001) Effects of graded hypoxia on cerebral cortical genomic DNA fragmentation in newborn piglets. Biol Neonate 79:187–193

    Article  PubMed  CAS  Google Scholar 

  57. Ferrer I, Tortosa A, Macaya A, Sierra A, Moreno D, Munell F, Blanco R, Squier W (1994) Evidence of nuclear DNA fragmentation following hypoxia-ischemia in the infant rat brain, and transient forebrain ischemia in the adult gerbil. Brain Pathol 4:115–122

    Article  PubMed  CAS  Google Scholar 

  58. Gillardon F, Lenz C, Waschke KF, Krajewski S, Reed JC, Zimmermann M, Kuschinsky W (1996) Altered expression of Bcl-2, Bcl-X, Bax, and c-Fos colocalizes with DNA fragmentation and ischemic cell damage following middle cerebral artery occlusion in rats. Mol Brain Res 40:254–260

    Article  PubMed  CAS  Google Scholar 

  59. Rosenbaum DM, Michaelson M, Batter DK, Doshi P, Kessler JA (1994) Evidence for hypoxia-induced, programmed cell death of cultured neurons. Ann. Neurol 36:864–870

    Article  PubMed  CAS  Google Scholar 

  60. Ravishankar S, Ashraf QM, Fritz KI, Mishra OP, Delivoria-Papadopoulos M (2001) Expression of Bax and Bcl-2 proteins during hypoxia in cerebral cortical neuronal nuclei of newborn piglets: effect of administration of magnesium sulfate. Brain Res 901:23–29

    Article  PubMed  CAS  Google Scholar 

  61. Pavlov EV, Priault M, Pietkiewicz D, Cheng EH, Antonsson B, Manon S, Korsmeyer SJ, Mannella CA, Kinnally KW (2001) A novel, high conductance channel of mitochondria linked to apoptosis in mammalian cells and Bax expression in yeast. J Cell Biol 155:725–731

    Article  PubMed  CAS  Google Scholar 

  62. Wu C, Fujihara H, Yao J, Qi S, Li H, Shimoji K, Baba H (2003) Different expression patterns of Bcl-2, Bcl-xl, and Bax proteins after sublethal forebrain ischemia in C57Black/Crj6 mouse striatum. Stroke 34:1803–1808

    Article  PubMed  CAS  Google Scholar 

  63. Ashraf QM, Zanelli S, Mishra OP, Delivoria-Papadopoulos M (2001) Phosphorylation of Bcl-2 and Bax proteins during hypoxia in newborn piglets. Neurochem Res 26:1–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Institutes of Health, NIH-HD-20337 and NIH-HD-38079. The authors express their thanks to Ms. Anli Zhu for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Delivoria-Papadopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delivoria-Papadopoulos, M., Ashraf, Q.M. & Mishra, O.P. Effect of Hypoxia on Expression of Apoptotic Proteins in Nuclear, Mitochondrial and Cytosolic Fractions of the Cerebral Cortex of Newborn Piglets: The Role of Nuclear Ca++-influx. Neurochem Res 33, 1196–1204 (2008). https://doi.org/10.1007/s11064-007-9568-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9568-6

Keywords

Navigation