Skip to main content
Log in

Antioxidant Effect of Cysteamine in Brain Cortex of Young Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cysteamine is a cystine-depleting drug used in the treatment of cystinosis, a metabolic disorder caused by deficiency of the lysosomal cystine carrier. As a result, cystine accumulates within lysosomes in many tissues and organs, including the nervous system. Studies with cystine dimethyl ester loaded cells suggest that cystine might induce apoptosis through oxidative stress. Our objective was to investigate the effects of co-administration of cysteamine with the oxidant cystine dimethyl ester on several parameters of oxidative stress in the brain cortex of rats. Animals were injected with 1.6 μmol/g cystine dimethyl ester and/or 0.26 μmol/g body weight cysteamine. Cystine dimethyl ester induced lipoperoxidation, protein carbonylation, and stimulated superoxide dismutase, glutathione peroxidase and catalase activities, probably through the formation of free radicals. Cysteamine prevented those effects, possibly increasing cellular thiol pool and acting as a scavenger of free radicals. These results suggest that the antioxidant effect of cysteamine may be important in the treatment of cystinosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pisoni RL, Park GY, Velilla VQ et al (1995) Detection and characterization of a transport system mediating cysteamine entry into human fibroblast lysosomes. Specificity for aminoethylthiol and aminoethylsulfide derivatives. J Biol Chem 270(3):1179–1184

    Article  PubMed  CAS  Google Scholar 

  2. Thoene JG, Oshima RG, Crawhall JC et al (1976) Cystinosis. Intracellular cystine depletion by aminothiols in vitro and in vivo. J Clin Invest 58(1):180–189

    Article  PubMed  CAS  Google Scholar 

  3. Dominy JE, Simmons CR, Hirschberger LL et al (2007) Discovery and characterization of a second mammalian thiol dioxygenase: Cysteamine dioxygenase. J Biol Chem. Jun 20; [Epub ahead of print]

  4. Salvador RA, Davison C, Smith PK (1957) Metabolism of cysteamine. J Pharmacol Exp Ther 121(2):258–265

    PubMed  CAS  Google Scholar 

  5. Lloyd JB (1986) Disulphide reduction in lysosomes. The role of cysteine. Biochem J 237(1):271–272

    PubMed  CAS  Google Scholar 

  6. Gahl WA (2003) Early oral cysteamine therapy for nephropathic cystinosis. Eur J Pediatr 162(1):38–41

    Article  CAS  Google Scholar 

  7. Tsilou ET, Rubin BI, Reed G et al (2006) Nephropathic cystinosis: posterior segment manifestations and effects of cysteamine therapy. Ophthalmology 113(6):1002–1009

    Article  PubMed  Google Scholar 

  8. Tsilou E, Zhou M, Gahl W et al (2007) Ophthalmic manifestations and histopathology of infantile nephropathic cystinosis: report of a case and review of the literature. Surv Ophthalmol 52(1):97–105

    Article  PubMed  Google Scholar 

  9. Gahl WA, Thoene JG, Schneider JA (2001) Cystinosis: a disorder of lysosomal membrane transport. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The Metabolic & Molecular Bases of Inherited Diseases. McGraw- Hill, New York, pp 5085–5108

    Google Scholar 

  10. Nichols SL, Press GA, Schneider JA et al (1990) Cortical atrophy and cognitive performance in infantile nephropathic cystinosis. Pediatr Neurol 6(6):379–381

    Article  PubMed  CAS  Google Scholar 

  11. Jonas AJ, Conley SB, Marshall R et al (1987) Nephropathic cystinosis with central nervous system involvement. Am J Med 83(5):966–970

    Article  PubMed  CAS  Google Scholar 

  12. Ballantyne AO, Scarvie KM, Trauner DA (1997) Academic achievement in individuals with infantile nephropathic cystinosis. Am J Med Genet 74(2):157–161

    Article  PubMed  CAS  Google Scholar 

  13. Vogel DG, Malekzadeh MH, Cornford ME et al (1990) Central nervous system involvement in nephropathic cystinosis. J Neuropathol Exp Neurol 49(6):591–599

    PubMed  CAS  Google Scholar 

  14. Depape-Brigger D, Goldman H, Scriver CR et al (1977) The in vivo use of dithiothreitol in cystinosis. Pediatr Res 11(2):124–131

    Article  PubMed  CAS  Google Scholar 

  15. Gahl WA, Dalakas MC, Charnas L et al (1988) Myopathy and cystine storage in muscles in a patient with nephropathic cystinosis. N Engl J Med 319(22):1461–1464

    Article  PubMed  CAS  Google Scholar 

  16. Kleta R, Gahl WA (2002) Cystinosis: antibodies and healthy bodies. J Am Soc Nephrol 13(8):2189–2191

    Article  PubMed  Google Scholar 

  17. Foreman JW, Benson LL, Wellons M et al (1995) Metabolic studies of rat renal tubule cells loaded with cystine: the cystine dimethylester model of cystinosis. J Am Soc Nephrol 6(2):269–272

    PubMed  CAS  Google Scholar 

  18. Park M, Helip-Wooley A, Thoene J (2002) Lysosomal cystine storage augments apoptosis in cultured human fibroblasts and renal tubular epithelial cells. J Am Soc Nephrol 13(12):2878–2887

    Article  PubMed  CAS  Google Scholar 

  19. Cantoni O, Brandi G, Albano A et al (1995) Action of cystine in the cytotoxic response of Escherichia coli cells exposed to hydrogen peroxide. Free Radic Res 22:275–283

    PubMed  CAS  Google Scholar 

  20. Fleck RM, Rodrigues Junior V, Giacomazzi J et al (2005) Cysteamine prevents and reverses the inhibition of creatine kinase activity caused by cystine in rat brain cortex. Neurochem Int 46(5):391–397

    Article  PubMed  CAS  Google Scholar 

  21. Feksa LR, Cornelio A, Dutra-Filho CS (2004) Inhibition of pyruvate kinase activity by cystine in brain cortex of rats. Brain Res 1012(1–2):93–100

    Article  PubMed  CAS  Google Scholar 

  22. Foreman JW, Bowring MA, Lee J et al (1987) Effect of cystine dimethyl ester on renal solute handling and isolated renal tubule transport in the rat. A new model Fanconi syndrome Metab 36:1185–1191

    CAS  Google Scholar 

  23. Ben-Nun A, Bashan N, Potashnik R et al (1993) Cystine loading induces Fanconi’s syndrome in rats: in vivo and vesicle studies. Am J Physiol 265:839–844

    Google Scholar 

  24. Llesuy SF, Milei J, Molina H (1985) Comparison of lipid peroxidation and myocardial damage induced by adriamycin and 4′-epiadriamycin in mice. Tumori 71(3):241–249

    PubMed  CAS  Google Scholar 

  25. Gonzalez Flecha B, Llesuy S, Boveris A (1991) Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver, and muscle Free Radic. Biol Med 10(2):93–100

    CAS  Google Scholar 

  26. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  PubMed  CAS  Google Scholar 

  27. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  PubMed  CAS  Google Scholar 

  28. Kehrer JP (2000) The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 149:43–50

    Article  PubMed  CAS  Google Scholar 

  29. Reznick AZ, Packer L (1994) Oxidative damage to proteins: Spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363

    PubMed  CAS  Google Scholar 

  30. Uchida K (2003) Histidine and lysine as targets of oxidative modification. Amino Acids 25:249–257

    Article  PubMed  CAS  Google Scholar 

  31. Levine RL, Garland D, Oliver CN et al (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  PubMed  CAS  Google Scholar 

  32. Aebi H (1984) Catalase, in vitro. Methods Enzymol 105:121–126

    PubMed  CAS  Google Scholar 

  33. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–332

    PubMed  CAS  Google Scholar 

  34. Zahler WL, Cleland WW (1968) A specific and sensitive assay for disulfides. J Biol Chem 243:716–719

    PubMed  CAS  Google Scholar 

  35. Lowry OH, Rosebrough NJ, Farr AL (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  36. Leech NL, Barrett KC, Morgan GA (2005) SPSS for intermediate statistics. Use and interpretation, Lawrence Erlbaum Associates Publishers (ed), London, pp 46–62

  37. Rech VC, Feksa LR, Arevalo do Amaral MF (2007) Promotion of oxidative stress in kidney of rats loaded with cystine dimethyl ester. Pediatr Nephrol 22(8):1121–1128

    Article  PubMed  Google Scholar 

  38. Wood PL, Khan MA, Moskal JR (2007) Cellular thiol pools are responsible for sequestration of cytotoxic reactive aldehydes: Central role of free cysteine and cysteamine. Brain Res 1158:158–163

    Article  PubMed  CAS  Google Scholar 

  39. Fox JH, Barber DS, Singh B, Zucker B, Swindell MK, Norflus F, Buzescu R, Chopra R, Ferrante RJ, Kazantsev A, Hersch SM. (2004) Cystamine increases L-cysteine levels in Huntington’s disease transgenic mouse brain and in a PC12 model of polyglutamine aggregation. J Neurochem 91:413–422

    Article  PubMed  CAS  Google Scholar 

  40. Winterbourn CC, Metodiewa CD (1999) Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide Free Radic. Biol Med 27:322–328

    CAS  Google Scholar 

  41. Rosenberg PA, Li Y, Ali S et al (1999) Intracellular redox state determines whether nitric oxide is toxic or protective to rat oligodendrocytes in culture. J Neurochem 73:476–484

    Article  PubMed  CAS  Google Scholar 

  42. Winterbourn CC, Peskin AV, Parsons-Mair HN (2002) Thiol oxidase activity of copper, zinc superoxide dismutase. J Biol Chem 277:1906–1911

    Article  PubMed  CAS  Google Scholar 

  43. Kono Y, Fridovich I (1982) Superoxide radical inhibits catalase. J Biol Chem 257:5751–5754

    PubMed  CAS  Google Scholar 

  44. Jones DP (2006) Redefining oxidative stress. Antioxid Redox Signal 8:1865–1879

    Article  PubMed  CAS  Google Scholar 

  45. Jones DP (2006) Extracellular redox state: refining the definition of oxidative stress in aging. Rejuvenation Res 9:169–181

    Article  PubMed  CAS  Google Scholar 

  46. Jones DP, Go YM, Anderson CL et al (2004) Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control. FASEB J 18:1246–1248

    PubMed  CAS  Google Scholar 

  47. Liu W, Kato M, Akhand AA et al (2000) 4-hydroxynonenal induces a cellular redox status-related activation of the caspase cascade for apoptotic cell death. J Cell Sci 113:635–641

    PubMed  CAS  Google Scholar 

  48. Antunes F, Cadenas E (2001) Cellular titration of apoptosis with steady state concentrations of H2O2: submicromolar levels of H2O2 induce apoptosis through Fenton chemistry independent of the cellular thiol state. Free Radic Biol Med 30:1008–1018

    Article  PubMed  CAS  Google Scholar 

  49. Tardy C, Andrieu-Abadie N, Salvayre R et al (2004) Lysosomal storage diseases: is impaired apoptosis a pathogenic mechanism? Neurochem. Res 29:871–880

    CAS  Google Scholar 

  50. Boya P, Andreau K, Poncet D et al (2003) Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J Exp Med 197:1323–1334

    Article  PubMed  CAS  Google Scholar 

  51. Park MA, Thoene JG (2005) Potential role of apoptosis in development of the cystinotic phenotype. Pediatr Nephrol 20:441–446

    Article  PubMed  Google Scholar 

  52. Park MA, Pejovic V, Kerisit KG et al (2006) Increased apoptosis in cystinotic fibroblasts and renal proximal tubule epithelial cells results from cysteinylation of protein kinase C (delta). J Am Soc Nephrol 17:3167–3175

    Article  PubMed  CAS  Google Scholar 

  53. Jiang S, Moriarty-Craige SE, Orr M et al (2005) Oxidant-induced apoptosis in human retinal pigment epithelial cells: dependence on extracellular redox state. Invest Ophtalmol Vis Sci 46:1054–1061

    Article  Google Scholar 

  54. Sestili P, Martinelli C, Bravi G et al (2006) Creatine supplementation affords cytoprotection in oxidatively injured cultured mammalian cells via direct antioxidant activity. Free Radic Biol Med 40:837–849

    Article  PubMed  CAS  Google Scholar 

  55. Hatano E, Tanaka A, Kanazawa A et al (2004) Inhibition of tumor necrosis factor-induced apoptosis in transgenic mouse liver expressing creatine kinase. Liver Int 24:384–393

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil), Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS, RS-Brazil), Programa de Núcleos de Excelência (PRONEX-CNPq /FAPERGS -Brazil) and Rede Instituto Brasileiro de Neurociência (IBN-Net), FINEP #01.06.0842-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clovis Milton Duval Wannmacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kessler, A., Biasibetti, M., da Silva Melo, D.A. et al. Antioxidant Effect of Cysteamine in Brain Cortex of Young Rats. Neurochem Res 33, 737–744 (2008). https://doi.org/10.1007/s11064-007-9486-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9486-7

Keywords

Navigation