Skip to main content

Advertisement

Log in

Inhibitory Effect of Polyunsaturated Fatty Acids on MMP-9 Release from Microglial Cells—Implications for Complementary Multiple Sclerosis Treatment

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We investigated whether polyunsaturated fatty acids (PUFA), which might be a useful complementary therapy among patients with multiple sclerosis (MS), are able to modulate matrix metalloproteinase (MMP) production in microglial cultures. MMPs are myelinotoxic factors. Primary cultures of rat microglia were treated with different doses of omega-3 (ω-3) PUFA or purified fish oil, containing a mixture of ω-3 and ω-6 PUFA, and simultaneously activated by exposure to lipopolysaccharide (LPS). Culture supernatants were subjected to zymography and Western blot analysis for the assessment of MMP-2 and MMP-9 levels. Increased amounts of MMP-9, but not of the constitutively expressed MMP-2, were observed in supernatants from LPS-treated microglia in comparison with non-treated control cells. The treatment with both ω-3 PUFA and fish oil dose-dependently inhibited the LPS-induced production of MMP-9. Our results suggest that a low fat diet supplemented with ω-3 PUFA may become recommended for the well being of MS patients under therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ebers GC, Sadovnick AD (1994) The role of genetic factors in multiple sclerosis susceptibility. J Neuroimmunol 54:1–17

    Article  PubMed  CAS  Google Scholar 

  2. Losy J (2001) Viral infections in the pathogenesis of multiple sclerosis. Neurol Neurochir Pol 35(4 Suppl):139–146

    PubMed  CAS  Google Scholar 

  3. Cook SD (1997) Multiple sclerosis and viruses. Mult Scler 3:388–389

    Article  PubMed  CAS  Google Scholar 

  4. Poser CM (1994) The epidemiology of multiple sclerosis: a general overview. Ann Neurol 36(Suppl 2):S180–S193

    Article  PubMed  Google Scholar 

  5. Lauer K (1997) Diet and multiple sclerosis. Neurology 49(Suppl 2):S55–S61

    PubMed  CAS  Google Scholar 

  6. Alter M, Yamoor M, Harshe M (1974) Multiple sclerosis and nutrition. Arch Neurol 31:267–272

    PubMed  CAS  Google Scholar 

  7. Lauer K (1994) The risk of multiple sclerosis in the U.S.A. in relation to sociogeographic features: a factor-analytic study. J Clin Epidemiol 47:43–48

    Article  PubMed  CAS  Google Scholar 

  8. Woessner JF (1991) Matrix metalloproteinases and their inhibitors in connective tissue remodelling. FASEB J 5:2145–2154

    PubMed  CAS  Google Scholar 

  9. Leppert D, Waubant E, Galardy R et al (1995) T cell gelatinases mediate basement membrane transmigration in vitro. J Immunol 154:4379–4389

    PubMed  CAS  Google Scholar 

  10. Agrawal S, Anderson P, Durbeej M et al (2006) Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. J Exp Med 203:1007–1019

    Article  PubMed  CAS  Google Scholar 

  11. Stuve O, Dooley NP, Uhm JH et al (1996) Interferon β-1b decreases the migration of T lymphocytes in vitro: effects on matrix metalloproteinase-9. Ann Neurol 40:853–863

    Article  PubMed  CAS  Google Scholar 

  12. Trojano M, Avolio C, Liuzzi GM et al (1999) Changes of serum ICAM-1 and MMP-9 induced by rIFNβ-1b treatment in relapsing-remitting MS. Neurology 53:1402–1408

    PubMed  CAS  Google Scholar 

  13. Liuzzi GM, Latronico T, Fasano A et al (2004) Interferon-beta inhibits the expression of metalloproteinases in rat glial cell cultures: implications for multiple sclerosis pathogenesis and treatment. Mult Scler 10:290–297

    Article  PubMed  CAS  Google Scholar 

  14. Peck MD (1994) Interaction of lipids with immune function I: biochemical effects of dietary lipids on plasma membranes. J Nutr Biochem 5:466–478

    Article  CAS  Google Scholar 

  15. Peck MD (1994) Interaction of lipids with immune function II: experimental and clinical studies of lipids and immunity. J Nutr Biochem 5:514–520

    Article  CAS  Google Scholar 

  16. Soyland E, Nenseter MS, Braathen L et al (1993) Very long chain n-3 and n-6 polyunsaturated fatty acids inhibit proliferation of human T-lymphocytes in vitro. Eur J Clin Invest 23:112–121

    Article  PubMed  CAS  Google Scholar 

  17. Simopoulos AP (2002) Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 21:495–505

    PubMed  CAS  Google Scholar 

  18. Zamaria N (2004) Alteration of polyunsaturated fatty acid status and metabolism in health and disease. Reprod Nutr Dev 44:273–282

    Article  PubMed  CAS  Google Scholar 

  19. Volker D, Fitzgerald P, Major G et al (2000) Efficacy of fish oil concentrate in the treatment of rheumatoid arthritis. J Rheumatol 27:2343–2346

    PubMed  CAS  Google Scholar 

  20. Nordvik I, Myhr KM, Nyland H et al (2000) Effect of dietary advice and n-3 supplementation in newly diagnosed MS patients. Acta Neurol Scand 102:143–149

    Article  PubMed  CAS  Google Scholar 

  21. Gallai V, Sarchielli P, Trequattrini et al (1995) Cytokine secretion and eicosanoid production in the peripheral blood mononuclear cells of MS patients undergoing dietary supplementation with n-3 polyunsaturated fatty acids. J Neuroimmunol 56:143–153

    Article  PubMed  CAS  Google Scholar 

  22. Neu I, Mallinger J, Wildfeuer A et al (1992) Leukotrienes in the cerebrospinal fluid of multiple sclerosis patients. Acta Neurol Scand 86:586–587

    Article  PubMed  CAS  Google Scholar 

  23. McCabe AJ, Wallace J, Gilmore WS et al (1999) The effect of eicosapentanoic acid on matrix metalloproteinase gene expression. Lipids 34(Suppl):S217–S218

    Article  PubMed  CAS  Google Scholar 

  24. Suzuki I, Iigo M, Ishikawa C et al (1997) Inhibitory effects of oleic and docosahexaenoic acids on lung metastasis by colon-carcinoma-26 cells are associated with reduced matrix metalloproteinase-2 and -9 activities. Int J Cancer 73:607–612

    Article  PubMed  CAS  Google Scholar 

  25. Harris MA, Hansen RA, Vidsudhiphan P et al (2001) Effects of conjugated linoleic acids and docosahexaenoic acid on rat liver and reproductive tissue fatty acids, prostaglandins and matrix metalloproteinase production. Prostaglandins Leukot Essent Fatty Acids 65:23–29

    Article  PubMed  CAS  Google Scholar 

  26. Nakajima K, Hamanoue M, Shimojo M et al (1989) Characterization of microglia isolated from a primary culture of embryonic rat brain by a simplified method. Biomed Res 10:411–423

    Google Scholar 

  27. Gebicke-Haerter PJ, Bauer J, Schobert A et al (1989) Lipopolysaccharide-free conditions in primary astrocyte cultures allow growth and isolation of microglial cells. J Neurosci 9:183–194

    PubMed  CAS  Google Scholar 

  28. Liu G, Bibus DM, Bode AM et al (2001) Omega 3 but not omega 6 fatty acids inhibit AP-1 activity and cell transformation in JB6 cells. Proc Natl Acad Sci USA 98:7510–7515

    Article  PubMed  CAS  Google Scholar 

  29. Heussen C, Dowdle EB (1980) Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem 102:196–202

    Article  PubMed  CAS  Google Scholar 

  30. Liuzzi GM, Mastroianni CM, Latronico T et al (2004) Anti-HIV drugs decrease the expression of matrix metalloproteinases in astrocytes and microglia. Brain 127:398–407

    Article  PubMed  CAS  Google Scholar 

  31. Liuzzi GM, Santacroce MP, Peumans WJ et al (1999) Regulation of gelatinases in microglia and astrocyte cell cultures by plant lectins. Glia 27:53–61

    Article  PubMed  CAS  Google Scholar 

  32. Rosenberg GA (2002) Matrix metalloproteinases in neuroinflammation. Glia 39:279–291

    Article  PubMed  Google Scholar 

  33. Van den Steen PE, Dubois B, Nelissen I et al (2002) Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol 37:375–536

    Article  PubMed  Google Scholar 

  34. Proost P, Van Damme J, Opdenakker G (1993) Leukocyte gelatinase B cleavage releases encephalitogens from human myelin basic protein. Biochem Biophys Res Commun 192:1175–1181

    Article  PubMed  CAS  Google Scholar 

  35. Gearing AJ, Beckett P, Christodoulou M et al (1994) Processing of tumor necrosis factor-α precursor by metalloproteinases. Nature 370:555–557

    Article  PubMed  CAS  Google Scholar 

  36. Gijbels K, Masure S, Carton H et al (1992) Gelatinase in the cerebrospinal fluid of patients with multiple sclerosis and other inflammatory neurological disorders. J Neuroimmunol 41:29–34

    Article  PubMed  CAS  Google Scholar 

  37. Liuzzi GM, Trojano MP, Fanelli M et al (2002) Intrathecal synthesis of matrix metalloproteinase-9 in patients with multiple sclerosis: implication for pathogenesis. Mult Scler 8:222–228

    Article  PubMed  CAS  Google Scholar 

  38. Freedman MS (2006) Disease-modifying drugs for multiple sclerosis: current and future aspects. Expert Opin Pharmacother 7(Suppl 1):S1–S9

    Article  PubMed  CAS  Google Scholar 

  39. Scott LJ, Figgitt DP (2004) Mitoxantrone: a review of its use in multiple sclerosis. Drugs 18:379–396

    CAS  Google Scholar 

  40. Paemen L, Martens E, Norga K et al (1996) The gelatinase inhibitory activity of tetracyclines and chemically modified tetracycline analogues as measured by a novel microtiter assay for inhibitors. Biochem Pharmacol 52:105–111

    Article  PubMed  CAS  Google Scholar 

  41. Brundula V, Rewcastle NB, Metz LM et al (2002) Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis. Brain 125:1297–1308

    Article  PubMed  Google Scholar 

  42. Harbige LS, Layward L, Morris-Downes MM et al (2000) The protective effects of omega-6 fatty acids in experimental autoimmune encephalomyelitis (EAE) in relation to transforming growth factor-beta 1 (TGF-beta1) up-regulation and increased prostaglandin E2 (PGE2) production. Clin Exp Immunol 122:445–452

    Article  PubMed  CAS  Google Scholar 

  43. Weinstock-Guttman B, Baier M, Park Y et al (2005) Low fat dietary intervention with omega-3 fatty acid supplementation in multiple sclerosis patients. Prostaglandins Leukot Essent Fatty Acids 73:397–404

    Article  PubMed  CAS  Google Scholar 

  44. Abumrad N, Harmon C, Ibrahimi A (1998) Membrane transport of long-chain fatty acids: evidence for a facilitated process. J Lipid Res 39:2309–2318

    PubMed  CAS  Google Scholar 

  45. Hakim IA, Harris RB, Ritenbaugh C (2000) Fat intake and risk of squamous cell carcinoma of the skin. Nutr Cancer 36:155–162

    Article  PubMed  CAS  Google Scholar 

  46. Fernandez E, Gallus S, La Vecchia C (2006) Nutrition and cancer risk: an overview. J Br Menopause Soc 12:139–142

    Article  PubMed  Google Scholar 

  47. Zhou S, Wang G, Chen B et al (2000) Effect of dietary fatty acids on tumorigenesis of colon cancer induced by methyl nitrosourea in rats. J Environ Pathol Toxicol Oncol 19:81–86

    PubMed  CAS  Google Scholar 

  48. Cantin AM, Martel M, Drouin G et al (2005) Inhibition of gelatinase B (matrix metalloproteinase-9) by dihydrolipoic acid. Can J Physiol Pharmacol 83:301–318

    Article  PubMed  CAS  Google Scholar 

  49. Berton A, Rigot V, Huet E et al (2001) Involvement of fibronectin type II repeats in the efficient inhibition of gelatinases A and B by long-chain unsaturated fatty acids. J Biol Chem 276:20458–20465

    Article  PubMed  CAS  Google Scholar 

  50. Endres S, Ghorbani R, Kelley VE et al (1989) The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N Engl J Med 320:265–271

    Article  PubMed  CAS  Google Scholar 

  51. Zaloga GP, Marik P (2001) Lipid modulation and systemic inflammation. Crit Care Clin 17:201–217

    Article  PubMed  CAS  Google Scholar 

  52. Petroni A, Salami M, Blasevich M et al (1994) Inhibition by n-3 fatty acids of arachidonic acid metabolism in a primary culture of astroglial cells. Neurochem Res 19:1187–1193

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the MS Project Grant no. 2004/R/16 from the Italian Multiple Sclerosis Foundation (FISM). The work was concluded under the auspices of the MARIE Network of the European Science Foundation regarding Myelin Structure and Its Role in Autoimmunity (2004–2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Riccio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liuzzi, G.M., Latronico, T., Rossano, R. et al. Inhibitory Effect of Polyunsaturated Fatty Acids on MMP-9 Release from Microglial Cells—Implications for Complementary Multiple Sclerosis Treatment. Neurochem Res 32, 2184–2193 (2007). https://doi.org/10.1007/s11064-007-9415-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9415-9

Keywords

Navigation