Skip to main content

Advertisement

Log in

Erythropoietin Prevents Blood Brain Barrier Damage Induced by Focal Cerebral Ischemia in Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Recombinant human erythropoietin (rhEPO), a neurovascular protective agent, therapeutically supports angiogenesis after stroke by enhancing endogenous up-regulation of vascular endothelial growth factor (VEGF). Increased VEGF expression has been characterized to negatively impact the integrity of the blood brain barrier (BBB), causing brain edema and secondary injury. The present study investigated the rhEPO-induced BBB protection after stroke and how it might be achieved by affecting VEGF pathway. rhEPO treatment (5,000 U/kg, i.p., 30 min before stroke and once a day for three days after stroke) reduced Evans blue leakage and brain edema after ischemia. The expression of the BBB integrity markers, occludin, α-catenin and β-catenin, in the brain was preserved in animals received rhEPO. rhEPO up-regulated VEGF expression; however, the expression of VEGF receptor-2 (fetal liver kinase receptor, Flk-1) was significantly reduced in rhEPO-treated animals three days after stroke. We propose that, disregarding increased VEGF levels, rhEPO protects against ischemia-induced BBB damage at least partly by down-regulating Flk-1 expression and the response to VEGF signaling in the acute phase after stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185

    Article  CAS  PubMed  Google Scholar 

  2. Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1–13

    Article  CAS  PubMed  Google Scholar 

  3. Dejana E, Corada M, Lampugnani MG (1995) Endothelial cell-to-cell junctions. Faseb J 9:910–918

    CAS  PubMed  Google Scholar 

  4. Neuwelt EA (2004) Mechanisms of disease: the blood-brain barrier. Neurosurgery 54:131–140; discussion 141–132

    Article  PubMed  Google Scholar 

  5. Fischer S, Clauss M, Wiesnet M et al. (1999) Hypoxia induces permeability in brain microvessel endothelial cells via VEGF and NO. Am J Physiol 276:C812–C820

    CAS  PubMed  Google Scholar 

  6. Fischer S, Wobben M, Marti HH et al. (2002) Hypoxia-induced hyperpermeability in brain microvessel endothelial cells involves VEGF-mediated changes in the expression of zonula occludens-1. Microvasc Res 63:70–80

    Article  CAS  PubMed  Google Scholar 

  7. Wang W, Dentler WL, Borchardt RT (2001) VEGF increases BMEC monolayer permeability by affecting occludin expression and tight junction assembly. Am J Physiol Heart Circ Physiol 280:H434–440

    CAS  PubMed  Google Scholar 

  8. Chi OZ, Hunter C, Liu X et al (2007) Effects of anti-VEGF antibody on blood-brain barrier disruption in focal cerebral ischemia. Exp Neurol 204:283–287

    Article  CAS  PubMed  Google Scholar 

  9. Genc S, Koroglu TF, Genc K (2004) Erythropoietin as a novel neuroprotectant. Restorat Neurol Neurosci 22:105–119

    CAS  Google Scholar 

  10. Wang L, Zhang Z, Wang Y et al. (2004) Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke; a J Cerebral Circul 35:1732–1737

    CAS  Google Scholar 

  11. Bartesaghi S, Marinovich M, Corsini E et al. (2005) Erythropoietin: a novel neuroprotective cytokine. Neurotoxicology 26:923–928

    Article  CAS  PubMed  Google Scholar 

  12. Li Y, Lu Z, Keogh CL et al. (2006) Erythropoietin-induced neurovascular protection, angiogenesis, and cerebral blood flow restoration after focal ischemia in mice. J Cereb Blood Flow Metab 27(5):1043–1054

    PubMed  Google Scholar 

  13. Wang W, Merrill MJ, Borchardt RT (1996) Vascular endothelial growth factor affects permeability of brain microvessel endothelial cells in vitro. Am J Physiol 271:C1973–1980

    CAS  PubMed  Google Scholar 

  14. Dvorak HF, Brown LF, Detmar M et al. (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol146:1029–1039

    Google Scholar 

  15. Shalaby F, Rossant J, Yamaguchi TP et al. (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66

    Article  CAS  PubMed  Google Scholar 

  16. Weis SM, Cheresh DA (2005) Pathophysiological consequences of VEGF–induced vascular permeability. Nature 437:497–504

    Article  CAS  PubMed  Google Scholar 

  17. Lafuente JV, Argandona EG, Mitre B (2006) VEGFR-2 expression in brain injury: its distribution related to brain-blood barrier markers. J Neural Transm 113:487–496

    Article  CAS  PubMed  Google Scholar 

  18. Hillman NJ, Whittles CE, Pocock TM et al. (2001) Differential effects of vascular endothelial growth factor-C and placental growth factor-1 on the hydraulic conductivity of frog mesenteric capillaries. J Vasc Res 38:176–186

    Article  CAS  PubMed  Google Scholar 

  19. Wei L, Cui L, Snider BJ et al. (2005) Transplantation of embryonic stem cells overexpressing Bcl-2 promotes functional recovery after transient cerebral ischemia. Neurobiol Dis 19:183–193

    Article  CAS  PubMed  Google Scholar 

  20. Calapai G, Marciano MC, Corica F et al. (2000) Erythropoietin protects against brain ischemic injury by inhibition of nitric oxide formation. Eur J Pharmacol 401:349–356

    Article  CAS  PubMed  Google Scholar 

  21. Fandrey J (2004) Oxygen–dependent and tissue-specific regulation of erythropoietin gene expression. Am J Physiol Regul Integr Comp Physiol 286:R977–988

    CAS  PubMed  Google Scholar 

  22. Wei L, Han BH, Li Y et al. (2006) Cell death mechanism and protective effect of erythropoietin after focal ischemia in the whisker-barrel cortex of neonatal rats. J Pharmacol Experiment Therapeut 317:109–116

    Article  CAS  Google Scholar 

  23. Bates DO, Hillman NJ, Williams B et al. (2002) Regulation of microvascular permeability by vascular endothelial growth factors. J Anat 200:581–597

    Article  CAS  PubMed  Google Scholar 

  24. Martinez-Estrada OM, Rodriguez-Millan E, Gonzalez-De Vicente E et al. (2003) Erythropoietin protects the in vitro blood-brain barrier against VEGF-induced permeability. Eur J Neurosci 18:2538–2544

    Article  PubMed  Google Scholar 

  25. Uzum G, Sarper Diler A, Bahcekapili N et al. (2006) Erythropoietin prevents the increase in blood-brain barrier permeability during pentylentetrazol induced seizures. Life Sci 78:2571–2576

    Article  PubMed  CAS  Google Scholar 

  26. Bahcekapili N, Uzum G, Gokkusu C et al. (2007) The relationship between erythropoietin pretreatment with blood-brain barrier and lipid peroxidation after ischemia/reperfusion in rats. Life Sci 80:1245–1251

    Article  CAS  PubMed  Google Scholar 

  27. Andras IE, Deli MA, Veszelka S et al. (2007) The NMDA and AMPA/KA receptors are involved in glutamate-induced alterations of occludin expression and phosphorylation in brain endothelial cells. J Cereb Blood Flow Metab

  28. Hawkins BT, Lundeen TF, Norwood KM et al. (2007) Increased blood-brain barrier permeability and altered tight junctions in experimental diabetes in the rat: contribution of hyperglycaemia and matrix metalloproteinases. Diabetologia 50:202–211

    Article  CAS  PubMed  Google Scholar 

  29. Neufeld G, Cohen T, Gengrinovitch S et al. (1999) Vascular endothelial growth factor (VEGF) and its receptors. Faseb J 13:9–22

    CAS  PubMed  Google Scholar 

  30. Park JE, Chen HH, Winer J et al. (1994) Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J Biolog Chem 269:25646–25654

    CAS  Google Scholar 

  31. Joukov V, Pajusola K, Kaipainen A et al. (1996) A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 15:290–298

    CAS  PubMed  Google Scholar 

  32. Bauters C, Asahara T, Zheng LP et al. (1995) Site-specific therapeutic angiogenesis after systemic administration of vascular endothelial growth factor. J Vasc Surg 21:314–324; discussion 324–315

    Article  CAS  PubMed  Google Scholar 

  33. Brogi E, Schatteman G, Wu T et al. (1996) Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression. J Clin Investig 97:469–476

    Article  CAS  PubMed  Google Scholar 

  34. Shibuya M (2006) Vascular endothelial growth factor (VEGF)-Receptor2: its biological functions, major signaling pathway, and specific ligand VEGF-E. Endothelium 13:63–69

    Article  CAS  PubMed  Google Scholar 

  35. Board RE, Thistlethwaite FC, Hawkins RE (2007) Anti-angiogenic therapy in the treatment of advanced renal cell cancer. Cancer Treatt Rev 33:1–8

    Article  CAS  Google Scholar 

  36. Takagi H, King GL, Ferrara N et al. (1996) Hypoxia regulates vascular endothelial growth factor receptor KDR/Flk gene expression through adenosine A2 receptors in retinal capillary endothelial cells. Investig Ophthalmol Visual Science 37:1311–1321

    CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH grants NS 37372, NS 045155, and NS 045810. The work was also supported by NIH C06 RR015455 from the Extramural Research Facilities Program of the National Center for Research Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Lu, ZY., Ogle, M. et al. Erythropoietin Prevents Blood Brain Barrier Damage Induced by Focal Cerebral Ischemia in Mice. Neurochem Res 32, 2132–2141 (2007). https://doi.org/10.1007/s11064-007-9387-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9387-9

Keywords

Navigation