Skip to main content

Advertisement

Log in

Lipid Peroxidation Scavengers Prevent the Carbonylation of Cytoskeletal Brain Proteins Induced by Glutathione Depletion

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Summary

In this study, we investigated the possible link between lipid peroxidation (LPO) and the formation of protein carbonyls (PCOs) during depletion of brain glutathione (GSH). To this end, rat brain slices were incubated with the GSH depletor diethyl maleate (DEM) in the absence or presence of classical LPO scavengers: trolox, caffeic acid phenethyl ester (CAPE), and butylated hydroxytoluene (BHT). All three scavengers reduced DEM-induced lipid oxidation and protein carbonylation, suggesting that intermediates/products of the LPO pathway such as lipid hydroperoxides, 4-hydroxynonenal and/or malondialdehyde are involved in the process. Additional in vitro experiments revealed that, among these products, lipid hydroperoxides are most likely responsible for protein oxidation. Interestingly, BHT prevented the carbonylation of cytoskeletal proteins but not that of soluble proteins, suggesting the existence of different mechanisms of PCO formation during GSH depletion. In pull-down experiments, β-actin and α/β-tubulin were identified as major carbonylation targets during GSH depletion, although other cytoskeletal proteins such as neurofilament proteins and glial fibrillary acidic protein were also carbonylated. These findings may be important in the context of neurological disorders that exhibit decreased GSH levels and increased protein carbonylation such as Parkinson’s disease, Alzheimer’s disease, and multiple sclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AG:

Aminoguanidine

BHT:

Butylated hydroxytoluene

CAPE:

Caffeic acid phenethyl ester

CNS:

Central nervous system

DEM:

Diethyl maleate

ECL:

Enhanced chemioluminescence

GFAP:

Glial fibrillary acidic protein

GSH:

Glutathione

4-HNE:

4-hydoxy-2-nonenal

15-HPETE:

15-hydroperoxy-5,8,11,13-eicosanotetraenoic acid

Hy:

Hydralazine

LPO:

Lipid peroxidation

MDA:

Malondialdehyde

NFH:

Neurofilament heavy (200 kDa) protein

NFL:

Neurofilament light (69 kDa) protein

NFM:

Neurofilament medium (150 kDa) protein

PCO:

Protein carbonyl

RCO:

Reactive carbonyl

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

TBARS:

Thiobarbituric acid reactive substances

References

  1. Stadtman ER, Berlett BS (1997) Reactive oxygen-mediated protein oxidation in aging and disease. Chem Res Toxicol 10:485–494

    Article  PubMed  CAS  Google Scholar 

  2. Levine RL (2002) Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med 32:790–796

    Article  PubMed  CAS  Google Scholar 

  3. Aksenov MY, Aksenova MV, Butterfield DA, Geddes JW, Markesbery WR (2001) Protein oxidation in the brain in Alzheimer’s disease. Neuroscience 103:373–383

    Article  PubMed  CAS  Google Scholar 

  4. Floor E, Wetzel MG (1998) Increased protein oxidation in human sustantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J Neurochem 70:268–275

    Article  PubMed  CAS  Google Scholar 

  5. Ferrante RJ, Browne SE, Shinobu LA, Bowling AC, Baik MJ, MacGarvey U, Kowall NW, Brown RH, Beal MF (1997) Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem 69:2064–2074

    Article  PubMed  CAS  Google Scholar 

  6. Bizzozero OA, Dejesus G, Callahan K, Pastuszyn A (2005) Elevated protein carbonylation in the brain white matter and gray matter of patients with multiple sclerosis. J Neurosci Res 81:687–695

    Article  PubMed  CAS  Google Scholar 

  7. Adams S, Green P, Claxton R, Simcox S, Williams MV, Walsh K, Leeuwenburgh C (2001). Reactive carbonyl formation by oxidative and non-oxidative pathways. Front Biosci 6:17–24

    Article  Google Scholar 

  8. Fu SL, Dean R (1997) Structural characterization of the products of hydroxyl-radical damage to leucine and their detection on proteins. Biochem J 324:41–48

    PubMed  CAS  Google Scholar 

  9. Sayre LM, Moreira PI, Smith MA, Perry G (2005) Metal ions and oxidative protein modification in neurological disease. Ann Ist Super Sanita 41:143–164

    PubMed  CAS  Google Scholar 

  10. Fu MX, Requena JR, Jenkins AJ, Lyons TJ, Baynes JW, Thorpe SR (1996) The advanced glycation end product, N-ε-(carboxymethyl)lysine is a product of both lipid peroxidation and glycoxidation reactions. J Biol Chem 271:9982–9986

    Article  PubMed  CAS  Google Scholar 

  11. Refsgaard HF, Tsai L, Stadman ER (2000) Modification of proteins by polyunsaturated fatty acid peroxidation products. Proc Natl Acad Sci USA 97:611–691

    Article  PubMed  CAS  Google Scholar 

  12. Requena JS, Chao CC, Levine R, Stadtman ER (2001) Glutamic and aminoadipic semialdehydes are the main carbonyl products of metal-catalyzed oxidation of proteins. Proc Natl Acad Sci USA 98:69–74

    Article  PubMed  CAS  Google Scholar 

  13. Pamplona R, Dalfo E, Ayala V, Bellmunt MJ, Prat J, Ferrer I, Portero-Otin M (2005) Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation. J Biol Chem 280:21522–21530

    Article  PubMed  CAS  Google Scholar 

  14. Yan LJ, Lodge JK, Traber MG, Packer L (1997) Apolipoprotein B carbonyl formation is enhanced by lipid peroxidation during copper-mediated oxidation of human low-density lipoproteins. Arch Biochem Biophys 339:165–171

    Article  PubMed  CAS  Google Scholar 

  15. Sayre LM, Zelasko DA, Harris PL, Perry G, Salomon RG, Smith MA (1997) 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J Neurochem 68:2092–2097

    Article  PubMed  CAS  Google Scholar 

  16. Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman ER, Mizuno Y (1996) Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci USA 93:2696–2701

    Article  PubMed  CAS  Google Scholar 

  17. Pedersen WA, Fu W, Keller JN, Markesbery WR, Appel S, Smith RG, Kasarskis E, Mattson MP (1998) Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann Neurol 44:819–824

    Article  PubMed  CAS  Google Scholar 

  18. Bizzozero OA, Ziegler JL, De Jesus G, Bolognani F (2006) Acute depletion of reduced glutathione causes extensive carbonylation of rat brain proteins. J Neurosci Res 83:656–667

    Article  PubMed  CAS  Google Scholar 

  19. Riddles PW, Blakely RL, Zerner B (1979) Ellman’s reagent: 5,5′-dithiobis(2-nitrobenzoic acid)-a reexamination. Anal Biochem 94:75–81

    Article  PubMed  CAS  Google Scholar 

  20. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  21. Amici A, Levine RL, Tsai L, Stadtman ER (1989) Conversion of amino acid residues in proteins and amino acid homopolymers to carbonyl derivatives by metal-catalyzed oxidation reactions. J Biol Chem 264:3341–3346

    PubMed  CAS  Google Scholar 

  22. Buchmuller-Rouiller Y, Corrandin SB, Smith J, Schneider P, Ransijn A, Jongeneel CV, Mauel J (1995) Role of glutathione in macrophage activation: effect of cellular glutathione depletion on nitrite production and leishmanicidal activity. Cell Immunol 164:73–80

    Article  PubMed  CAS  Google Scholar 

  23. Kaminskas LM, Pyke SM, Burcham PC (2004) Strong protein adduct trapping accompanies abolition of acrolein-mediated hepatotoxicity by hydralazine in mice. J Pharmacol Exp Ther 310:1003–1010

    Article  PubMed  CAS  Google Scholar 

  24. Al-Abed Y, Bucala R (1997) Efficient scavenging of fatty acid oxidation products by aminoguanidine. Chem Res Toxicol 10:875–879

    Article  PubMed  CAS  Google Scholar 

  25. Daiber A, Mülsch A, Hink U, Mollnau H, Warnholtz A, Oelze M, Münzel T (2005) The oxidative stress concept of nitrate tolerance and the antioxidant properties of hydralazine. Am J Cardiol 96:25–36

    Article  CAS  Google Scholar 

  26. Giardino I, Fard AK, Hatchell DL, Brownlee M (1998) Aminoguanidine inhibits reactive oxygen species formation, lipid peroxidation, and oxidant-induced apoptosis. Diabetes 47:1114–1120

    Article  PubMed  CAS  Google Scholar 

  27. Chaiyasit W, McClements J, Decker EA (2005) The relationship between the physicochemical properties of antioxidants and their ability to inhibit lipid oxidation in bulk oil and oil–water emulsions. J Agric Food Chem 53:4982–4988

    Article  PubMed  CAS  Google Scholar 

  28. Son S, Lewis BA (2002) Free radical scavenging and antioxidative activity of caffeic acid amide and ester analogues: structure-activity relationship. J Agric Food Chem 50:468–472

    Article  PubMed  CAS  Google Scholar 

  29. Pluta RM, Jung CS, Harvey-White J, Whitehead A, Shilad S, Espey MG, Oldfield EH (2005) In vitro and in vivo effects of probucol on hydrolysis of asymmetric dimethyl l-arginine and vasospasm in primates. J Neurosurg 103:731–738

    Article  PubMed  CAS  Google Scholar 

  30. Davies MJ, Slater TF (1987) Studies on the metal-ion and lipoxygenase-catalysed breakdown of hydroperoxides using electron-spin-resonance spectroscopy. Biochem J 245:167–173

    PubMed  CAS  Google Scholar 

  31. Pennathur S, IdoY, Heller JI, Byun J, Danda R, Pergola P, Williamson JR, Heinecke JW (2005) Reactive carbonyls and polyunsaturated fatty acids produce hydroxyl radical-like species. J Biol Chem 280:22706–22714

    Article  PubMed  CAS  Google Scholar 

  32. Muntané G, Dalfó E, Martínez A, Rey MJ, Avila J, Pérez M, Portero M, Pamplona R, Ayala V, Ferrer I (2006) Glial fibrillary acidic protein is a major target of glycoxidative and lipoxidative damage in Pick’s disease. J Neurochem 99:177–185

    Article  PubMed  CAS  Google Scholar 

  33. Butterfield DA, Abdul HM, Newman S, Reed T (2006) Redox proteomics in some age-related neurodegenerative disorders or models thereof. NeuroRx 3:344–357

    Article  PubMed  CAS  Google Scholar 

  34. Banan A, Zhang LJ, Shaikh M, Fields JZ, Farhadi A, Keshavarzian A (2004) Novel effect of NF-κB activation: carbonylation and nitration injury to cytoskeleton and disruption of monolayer barrier in intestinal epithelium. Am J Physiol Cell Physiol 287:C139–C151

    Google Scholar 

  35. Neely MD, Boutte A, Milatovic D, Montine TJ (2005) Mechanisms of 4-hydroxynonenal-induced neuronal microtubule dysfunction. Brain Res 1037:90–98

    Article  PubMed  CAS  Google Scholar 

  36. Dalle-Done I, Rossi R, Giustarini D, Gagliano N, Lusini L, Milzani A, Di Simplicio P, Colombo R (2001) Actin carbonylation: from a simple marker of protein oxidation to relevant signs of severe functional impairment. Free Radic Biol Med 31:1075–1083

    Article  Google Scholar 

  37. Ozeki M, Miyagawa-Hayashino A, Akatsuka S, Shirase T, Lee WH, Uchida K, Toyokuni S (2005) Susceptibility of actin to modification by 4-hydroxy-2-nonenal. J Chromatogr 827:119–126

    Article  CAS  Google Scholar 

  38. Banan A, Fitzpatrick L, Zhang LJ, Keshavarzian A (2001) OPC-compounds prevent oxidant-induced carbonylation and depolymerization of the F-actin cytoskeleton and intestinal barrier hyperpermeability. Free Radic Biol Med 30:287–298

    Article  PubMed  CAS  Google Scholar 

  39. Wataya T, Nunomura A, Smith MA, Siedlak SL, Harris PL, Shimohama S, Szweda LI, Kaminski MA, Avila J, Price DL, Cleveland DW, Sayre LM, Perry G (2002) High molecular weight neurofilament proteins are physiological substrates of adduction by the lipid peroxidation product hydroxynonenal. J Biol Chem 277:4644–4648

    Article  PubMed  CAS  Google Scholar 

  40. Gelinas S, Chapados C, Beauregard M, Gosselin I, Martinoli MG (2000) Effect of oxidative stress on stability and structure of neurofilament proteins. Biochem Cell Biol 78:667–674

    Article  PubMed  CAS  Google Scholar 

  41. Smith MA, Rudnicka-Nawrot M, Richey PL, Praprotnik D, Mulvihill P, Miller CA, Sayre LM, Perry G (1995) Carbonyl-related posttranslational modification of neurofilament protein in the neurofibrillary pathology of Alzheimer’s disease. J Neurochem 64:2660–2666

    Article  PubMed  CAS  Google Scholar 

  42. Toncoso JC, Costello AC, Kim JH, Johnson GV (1995) Metal-catalyzed oxidation of bovine neurofilaments in vitro. Free Radic Biol Med 18:891–899

    Article  Google Scholar 

  43. Butterfield DA, Lauderback CM (2002) Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic Biol Med 32:1050–1060

    Article  PubMed  CAS  Google Scholar 

  44. Andrus PK, Fleck TJ, Gurney ME, Hall ED (1998) Protein oxidative damage in a transgenic mouse model of familial amyotrophic lateral sclerosis. J Neurochem 71:2041–2048

    Article  PubMed  CAS  Google Scholar 

  45. Smerjac S, Bizzozero OA (2006) Increased protein carbonylation in experimental allergic encephalomyelitis. J Neurochem 96(Suppl 1):PTW07–7

    Google Scholar 

Download references

Acknowledgements

This work was supported by PHHS grants NS 47448 and IMSD GM 60201 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar A. Bizzozero.

Additional information

Special issue in honor of Naren Banik.

Dr. Oscar Bizzozero dedicates this article to Dr. Naren Banik, outstanding scientist and colleague, in honor to his life-long achievements in the area of spinal cord injury and multiple sclerosis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bizzozero, O.A., Reyes, S., Ziegler, J. et al. Lipid Peroxidation Scavengers Prevent the Carbonylation of Cytoskeletal Brain Proteins Induced by Glutathione Depletion. Neurochem Res 32, 2114–2122 (2007). https://doi.org/10.1007/s11064-007-9377-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9377-y

Keywords

Navigation