Skip to main content

Advertisement

Log in

Dopaminergic Agonists: Possible Neurorescue Drugs Endowed with Independent and Synergistic Multisites of Action

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Dopaminergic agonists have been usually used as adjunctive therapy for the cure of Parkinson’s disease (PD). It is generally believed that treatment with these drugs is symptomatic rather then curative and does not stop or delay the progression of neuronal degeneration. However, several DA agonists of the DA D2–receptor family (including D2, D3 and D4-subtypes) have recently been shown to possess neuroprotective properties in different in vitro and in vivo experimental PD models. Here we summarize some recent data from our and other groups underlining the wide pharmacological spectrum of DA agonists currently used for treating PD patients. In particular, the mechanism of action of different DA agonists does not appear to be restricted to the stimulation of selective DA receptor subtypes being these drugs endowed with intrinsic, independent, and peculiar antioxidant effects. This activity may represent an additional pharmacological property contributing to their clinical efficacy in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ogawa N, Tanaka K, Asanuma M, Kawai M, Masumizu T, Kohno M, Mori A (1994) Bromocriptine protects mice against 6-hydroxydopamine and scavenges hydroxyl free radicals in vitro. Brain Res 657:207–213

    Article  PubMed  CAS  Google Scholar 

  2. Gassen M, Gross A, Youdim MB (1998) Apomorphine enantiomers protect cultured pheochromocytoma (PC12) cells from oxidative stress induced by H2O2 and 6-hydroxydopamine. Mov Disord 13:661–667

    Article  PubMed  CAS  Google Scholar 

  3. Asanuma M, Ogawa N, Nishibayashi S, Kawai M, Kondo Y, Iwata E (1995) Protective effects of pergolide on dopamine levels in the 6-hydroxydopamine-lesioned mouse brain. Arch Int Pharmacodyn Ther 329:221–230

    PubMed  CAS  Google Scholar 

  4. Kitamura Y, Kohno Y, Nakazawa M, Nomura Y (1997) Inhibitory effects of talipexole and pramipexole on MPTP-induced dopamine reduction in the striatum of C57BL/6N mice. Jpn J Pharmacol 74:51–57

    PubMed  CAS  Google Scholar 

  5. Cassarino DS, Fall CP, Smith TS, Bennett JP Jr (1998) Pramipexole reduces reactive oxygen species production in vivo and in vitro and inhibits the mitochondrial permeability transition produced by the parkinsonian neurotoxin methylpyridinium ion. J Neurochem 71:295–301

    Article  PubMed  CAS  Google Scholar 

  6. Zou L, Xu J, Jankovic J, He Y, Appel SH, Le W (2000) Pramipexole inhibits lipid peroxidation and reduces injury in the substantia nigra induced by the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57BL/6 mice. Neurosci Lett 281:167–170

    Article  PubMed  CAS  Google Scholar 

  7. Vu TQ, Ling ZD, Ma SY, Robie HC, Tong CW, Chen EY, Lipton JW, Carvey PM (2000) Pramipexole attenuates the dopaminergic cell loss induced by intraventricular 6-hydroxydopamine. J Neural Transm 107:159–176

    Article  PubMed  CAS  Google Scholar 

  8. Joyce JN, Millan MJ (2007) Dopamine D3 receptor agonists for protection and repair in Parkinson’s disease. Cur Op Pharmacol 7:100–105

    Article  CAS  Google Scholar 

  9. Caray PM, McGuire SO, Ling ZD (2001) Neuroprotective effects of D3 dopamine receptor agonists. Parkinsonism Relat Disord 7:213–223

    Article  Google Scholar 

  10. Van Kapen JM, Eckman CB (2006) Dopamine D3 receptor agonist delivery to a model of Parkinson’s disease restores the nigrostriatal pathway and improves locomotor behaviour. Neurobiol Dis 26:7272–7280

    Google Scholar 

  11. Parkinson Study Group (2002) Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson’s disease progression. JAMA 287:1653–1661

    Article  Google Scholar 

  12. Whone AL, Watts RL, Stoessl AJ, Davis M, Reske S, Nahmias C, Lang AE, Rascol O, Ribeiro MJ, Remy P, Poewe WH, Hauser RA, Brooks DJ, REAL-PET Study Group (2003) Slower progression of Parkinson’s disease with ropinirole versus levodopa: the REAL-PET study. Ann Neurol 54:93–101

    Google Scholar 

  13. Uberti D, Piccioni L, Colzi A, Bravi D, Canonico PL, Memo M (2002) Pergolide protects SH-SY5Y cells against neurodegeneration induced by H(2)O(2). Eur J Pharmacol 434:17–20

    Article  PubMed  CAS  Google Scholar 

  14. Grilli M, Memo M (1999a) Possible role of NF-kappaB and p53 in the glutamate-induced pro-apoptotic neuronal pathway. Cell Death Differ 6:22–27

    Article  CAS  Google Scholar 

  15. Grilli M, Memo M (1999b) Nuclear factor-kappaB/Rel proteins: a point of convergence of signalling pathways relevant in neuronal function and dysfunction. Biochem Pharmacol 57:1–7

    Article  CAS  Google Scholar 

  16. Uberti D, Carsana T, Francisconi S, Ferrari Toninelli G, Canonico PL, Memo M (2004) A novel mechanism for pergolide-induced neuroprotection: inhibition of NF-kappaB nuclear translocation. Biochem Pharmacol 67:1743–1750

    Article  PubMed  CAS  Google Scholar 

  17. Fujita Y, Izawa Y, Ali N, Kanematsu Y, Tsuchiya K, Hamano S, Tamaki T, Yoshizumi M (2006) Pramipexole protects against H2O2-induced PC12 cell death. Naunyn Schmiedebergs Arch Pharmacol 372:257–266

    Article  PubMed  CAS  Google Scholar 

  18. Le WD, Jankovic J, Xie W, Appel SH (2000) Antioxidant property of pramipexole independent of dopamine receptor activation in neuroprotection. J Neural Transm 107:1165–1173

    Article  PubMed  CAS  Google Scholar 

  19. Abramova NA, Cassarino DS, Khan SM, Painter TW, Bennett JP Jr (2002) Inhibition by R(+) or S(-) pramipexole of caspase activation and cell death induced by methylpyridinium ion or beta amyloid peptide in SH-SY5Y neuroblastoma. J Neurosci Res 67:494–500

    Article  PubMed  CAS  Google Scholar 

  20. Huang F, Vemuri MC, Schneider JS (2004) Modulation of ATP levels alters the mode of hydrogen peroxide-induced cell death in primary cortical cultures: effects of putative neuroprotective agents. Brain Res 997:79–88

    Article  PubMed  CAS  Google Scholar 

  21. Pattee GL, Post GR, Gerber RE, Bennett JP Jr (2003) Reduction of oxidative stress in amyotrophic lateral sclerosis following pramipexole treatment. Amyotroph Lateral Scler Other Motor Neuron Disord 4:90–95

    Article  PubMed  CAS  Google Scholar 

  22. Spina MB, Cohen G (1989) Dopamine turnover and glutathione oxidation: implications for Parkinson disease. Proc Natl Acad Sci USA 86:1398–1400

    Article  PubMed  CAS  Google Scholar 

  23. Dexter DT, Holley AE, Flitter WD, Slater TF, Wells FR, Daniel SE, Lees AJ, Jenner P, Marsden CD (1994) Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study. Mov Disord 9:92–97

    Article  PubMed  CAS  Google Scholar 

  24. Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman ER, Mizuno Y (1996) Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci USA 93:2696–2701

    Article  PubMed  CAS  Google Scholar 

  25. McKeith IG, Mosimann UP (2004) Dementia with Lewy bodies and Parkinson’s disease. Parkinsonism and Relat Disord 10:S15–S18

    Article  Google Scholar 

  26. Burn DJ, McKeith IG (2003) Current treatment of dementia with Lewy bodies and dementia associated with Parkinson’s disease. Mov Disord 18:72–79

    Article  Google Scholar 

  27. Lin M.T., Beal F (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  PubMed  CAS  Google Scholar 

  28. Butterfield DA (2003) Amyloid beta-peptide [1–42]-associated free radical-induced oxidative stress and neurodegeneration in Alzheimer’s disease brain: mechanisms and consequences. Curr Med Chem 10:2651–2658

    Article  PubMed  CAS  Google Scholar 

  29. Moreira PI, Smith MA, Zhu X, Honda K, Lee HG, Aliev G, Perry G (2005) Oxidative damage and Alzheimer’s disease: are antioxidant therapies useful? Drug News Perspect 18:13–19

    Article  PubMed  CAS  Google Scholar 

  30. Behl C. (2005) Oxidative stress in Alzheimer’s disease: implications for prevention and therapy. Subcell Biochem 38:65–78

    Article  PubMed  CAS  Google Scholar 

  31. Aksenov MY, Aksenova MV, Carney JM, Butterfield DA (1997) Oxidative modification of glutamine synthetase by amyloid beta peptide. Free Rad Res 27:267–281

    CAS  Google Scholar 

  32. Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205–214

    Article  PubMed  CAS  Google Scholar 

  33. Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, Sinha S, Schlossmacher M, Whaley J, Swindlehurst C et al (1992) Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids. Nature 359:325–327

    Article  PubMed  CAS  Google Scholar 

  34. Boyd-Kimball D, Sultana R, Mohmmad-Abdul H, Butterfield DA (2005) Neurotoxicity and oxidative stress in D1M-substituted Alzheimer’s A beta(1–42): relevance to N-terminal methionine chemistry in small model peptides. Peptides 26:665–673

    Article  PubMed  CAS  Google Scholar 

  35. Butterfield DA (1997) beta-Amyloid-associated free radical oxidative stress and neurotoxicity: implications for Alzheimer’s disease. Chem Res Toxicol 10:495–506

    Article  PubMed  CAS  Google Scholar 

  36. Subramaniam R, Koppal T, Green M, Yatin S, Jordan B, Drake J, Butterfield DA (1998) The free radical antioxidant vitamin E protects cortical synaptosomal membranes from amyloid beta-peptide(25–35) toxicity but not from hydroxynonenal toxicity: relevance to the free radical hypothesis of Alzheimer’s disease. Neurochem Res 23:1403–1410

    Article  PubMed  CAS  Google Scholar 

  37. Uberti D, Bianchi I, Olivari L, Ferrari-Toninelli G, Canonico P, Memo M (2007) Neuroprotective effect of pramipexole against beta amyloid toxicity depends on peptide aggregated states. Eur J Pharmacol, in press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Memo.

Additional information

Special issue dedicated to Dr. Moussa Youdim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uberti, D., Bianchi, I., Olivari, L. et al. Dopaminergic Agonists: Possible Neurorescue Drugs Endowed with Independent and Synergistic Multisites of Action. Neurochem Res 32, 1726–1729 (2007). https://doi.org/10.1007/s11064-007-9350-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9350-9

Keywords

Navigation