Skip to main content
Log in

Time-dependent Alteration of Cytoskeletal Proteins in Cerebral Cortex of Rat During 2,5-Hexanedione-induced Neuropathy

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

To investigate the mechanisms of the axonopathy induced by 2,5-hexanedione (2,5-HD), male Wistar rats were administered at a dosage of 400 mg/kg/day 2,5-HD (five times per week). The rats produced a slightly, moderately, or severely abnormal neurological changes, respectively, after 2, 4, or 8 weeks of treatment. The cerebrums were Triton-extracted and ultracentrifuged to yield a pellet fraction and a corresponding supernatant fraction. The relative levels of six cytoskeletal proteins (NF-L, NF-M, NF-H, α-tubulin, β-tubulin, and β-actin) in both fractions were determined by immunoblotting. The results showed that NFs content in HD-treated rats demonstrated a progressive decline as the intoxication of HD continued. As for microtubule proteins, the levels of α-tubulin and β-tubulin demonstrated some inconsistent changes. The content of α-tubulin kept unchangeable, while the content of β-tubulin increased significantly at the late stage of HD exposure. Furthermore, the content of β-actin in both fractions remained unaffected throughout the study. These findings suggest that HD intoxication resulted in a progressive decline of NFs, which was highly correlated with the development of HD-induced neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Altenkirch H, Mager J, Stoltenburg G, Helmbrecht J (1977) Toxic polyneuropathies after sniffing a glue thinner. J Neurol 214:137–152

    Article  PubMed  CAS  Google Scholar 

  2. Spencer PS, Schaumburg HH, Sabri MI, Veronesi B (1980) The enlarging view of hexacarbon neurotoxicity. Crit Rev Toxicol 7:279–356

    PubMed  CAS  Google Scholar 

  3. Cavanagh JB, Bennetts RJ (1981) On the pattern of changes in the rat nervous system produced by 2,5 hexanediol. A topographical study by light microscopy. Brain 104:297–318

    Article  PubMed  CAS  Google Scholar 

  4. Couri D, Milks M (1982) Toxicity and metabolism of the neurotoxic hexacarbons n-hexane, 2-hexanone, and 2,5-hexanedione. Annu Rev Pharmacol Toxicol 22:145–166

    Article  PubMed  CAS  Google Scholar 

  5. Lehning EJ, Dyer KS, Jortner BS, LoPachin RM (1995) Axonal atrophy is a specific component of 2,5-hexanedione peripheral neuropathy. Toxicol Appl Pharmacol 135:58–66

    Article  PubMed  CAS  Google Scholar 

  6. Lehning EJ, Jortner BS, Fox JH, Arezzo JC, KitanoT, LoPachin RM (2000) Gamma-diketone peripheral neuropathy. I. Quality morphometric analyses of axonal atrophy and swelling. Toxicol Appl Pharmacol 165:127–140

    Article  PubMed  CAS  Google Scholar 

  7. Opanashuk LA, He DK, Lehning EJ, Lopachin RM (2001) Diketone peripheral neuropathy III. Neurofilament gene expression. Neurotoxicology 22:215–220

    Article  PubMed  CAS  Google Scholar 

  8. DeCaprio AP, O’Neill EA (1985) Alterations in rat axonal cytoskeletal proteins induced by in vitro and in vivo 2,5-hexanedione exposure. Toxicol Appl Pharmacol 78:235–247

    Article  PubMed  CAS  Google Scholar 

  9. Carden MJ, Lee VM, Schlaepfer WW (1986) 2,5-Hexanedione neuropathy is associated with the covalent crosslinking of neurofilament proteins. Neurochem Pathol 5:25–35

    PubMed  CAS  Google Scholar 

  10. Lapadula DM, Suwita E, Abou-Donia MB (1988) Evidence for multiple mechanisms responsible for 2,5-hexanedione-induced neuropathy. Brain Res 458:123–131

    Article  PubMed  CAS  Google Scholar 

  11. LoPachin RM, He D, Reid ML, Opanashuk LA (2004) 2,5-Hexanedione-induced changes in monomeric neurofilament protein content of rat spinal cord fractions. Toxicol Appl Pharmacol 198:61–73

    Article  PubMed  CAS  Google Scholar 

  12. LoPachin RM, He D, Reid ML (2005) 2,5-Hexanedione-induced changes in the neurofilament subunit pools of rat peripheral nerve. Neurotoxicology 26:229–240

    Article  PubMed  CAS  Google Scholar 

  13. Zhang T, Han X, Zhao X, Zhao L, Zhang C, Yu L, Yu S, Xie K (2005) 2,5-Hexanedione induced reduction in protein content and mRNA expression of neurofilament in rat cerebral cortex. Environ Toxicol Pharmacol 20:92–98

    Article  CAS  Google Scholar 

  14. LoPachin RM, Ross JF, Reid ML, Das S, Mansukhani S, Lehning EJ (2002) Neurological evaluation of toxic axonopathies in rats: acrylamide and 2,5-hexanedione. Neurotoxicology 23:95–110

    Article  PubMed  CAS  Google Scholar 

  15. Chiu FC, Norton WT (1982) Bulk preparation of CNS cytoskeleton and the separation of individual neurofilament proteins by gel filtration: dye-binding characteristics and amino acid compositions. J Neurochem 39:1252–1260

    Article  PubMed  CAS  Google Scholar 

  16. Tsuda M, Tashiro T, Komiya Y (1997) Increased solubility of highmolecular-mass neurofilament subunit by suppression of dephosphorylation: its relation to axonal transport. J Neurochem 68:2558–2565

    Article  PubMed  CAS  Google Scholar 

  17. Lee MK, Cleveland DW (1996) Neuronal intermediate filaments. Annu Rev Neurosci 19:187–217

    Article  PubMed  CAS  Google Scholar 

  18. Lee MK, Xu Z, Wong PC, Cleveland DW (1993) Neurofilaments are obligate heteropolymers in vivo. J Cell Biol 122:1337–1350

    Article  PubMed  CAS  Google Scholar 

  19. Cleveland DW, Monteiro MJ, Wong PC, Gill SR, Gearhart JD, Hoffman PN (1991) Involvement of neurofilaments in the radial growth of axons. J Cell Sci Suppl 15:85–95

    PubMed  CAS  Google Scholar 

  20. Lee MK, Cleveland DW (1994) Neurofilament function and dysfunction: involvement in axonal growth and neuronal disease. Curr Opin Cell Biol 6:34–40

    Article  PubMed  CAS  Google Scholar 

  21. Micheva KD, Vallee A, Beaulieu C, Herman IM, Leclerc N (1998) Beta-actin is confined to structures having high capacity of remodeling in developing and adult rat cerebellum. Eur J Neurosci 10:3785–3798

    Article  PubMed  CAS  Google Scholar 

  22. Shea TB, Dahl DC, Nixon RA, Fischer I (1997) Triton-soluble phosphovariants of the heavy neurofilament subunit in developing and mature mouse central nervous system. J Neurosci Res 48:515–523

    Article  PubMed  CAS  Google Scholar 

  23. Shea TB, Sihag RK, Nixon RA (1990) Dynamics of phosphorylation and assembly of the high molecular weight neurofilament subunit in NB2a/d1 neuroblastoma. J Neurochem 55:1784–1792

    Article  PubMed  CAS  Google Scholar 

  24. Cohlberg JA, Hajarian H, Tran T, Alipourjeddi P, Noveen A (1995) Neurofilament protein heterotetramers as assembly intermediates. J Biol Chem 270:9334–9339

    Article  PubMed  CAS  Google Scholar 

  25. Arbuthnott ER, Boyd IA, Kalu KU (1980) Ultrastructural dimensions of myelinated peripheral nerve fibers in the cat and their relation to conduction velocity. J Physiol 308:125–137

    PubMed  CAS  Google Scholar 

  26. Sakaguchi T, Okada M, Kitamura T, Kawasaki K (1993) Reduced diameter and conduction velocity of myelinated fibers in the sciatic nerve of a neurofilament-deficient mutant quail. Neurosci Lett 153:65–68

    Article  PubMed  CAS  Google Scholar 

  27. Banik NL, Hogan EL, Powers JM, Whetstine LJ (1982) Degradation of cytoskeletal proteins in spinal cord injury. Neurochem Res 7:1465–1475

    Article  PubMed  CAS  Google Scholar 

  28. Banik NL, Matzelle DC, Gantt-Wilford G, Osborne A, Hogan EL (1997) Increased calpain content and progressive degradation of neurofilament protein in spinal cord injury. Brain Res 752:301–306

    Article  PubMed  CAS  Google Scholar 

  29. Ray SK, Hogan EL, Banik NL (2003) Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. Brain Res Rev 42:169–185

    Article  PubMed  CAS  Google Scholar 

  30. Guo-Ross S, Yang E, Bondy SC (1998) Elevation of cerebral proteases after systemic administration of aluminum. Neurochem Int 33(3):277–282

    Article  PubMed  CAS  Google Scholar 

  31. Gupta RP, Abou-Donia MB (1996) Alterations in the neutral proteinase activities of central and peripheral nervous systems of acrylamide-, carbon disulfide-, or 2,5-hexanedione-treated rats. Mol Chem Neuropathol 29:53–66

    Article  PubMed  CAS  Google Scholar 

  32. Rao MV, Houseweart MK, Williamson TL, Crawford TO, Folmer J, Cleveland DW (1998) Neurofilament-dependent radial growth of motor axons and axonal organization of neurofilaments does not require the neurofilament heavy subunit (NF-H) or its phosphorylation. J Cell Biol 143:171–181

    Article  PubMed  CAS  Google Scholar 

  33. Moskowitz PF, Smith R, Pickett J, Frankfurter A, Oblinger MM (1993) Expression of the class III β-tubulin gene during axonal regeneration of rat dorsal root ganglion neurons. J Neurosci Res 34:129–134

    Article  PubMed  CAS  Google Scholar 

  34. Song FY, Yu SF, Zhao XL, Zhang CL, Xie KQ (2006) Carbon disulfide-induced changes in cytoskeleton protein content of rat cerebral cortex. Neurochem Res 31:71–79

    Article  PubMed  CAS  Google Scholar 

  35. Yagihashi S, Kamijo M, Watanabe K (1990) Reduced myelinated fiber size correlates with loss of axonal neurofilaments in peripheral nerve of chronically streptozotocin rats. Am J Pathol 136:1365–1373

    PubMed  CAS  Google Scholar 

  36. Liuzzi FJ, Bufton SM, Vinik AI (1998) Streptozotocin-induced diabetes mellitus causes changes in primary sensory neuronal cytoskeletal mRNA levels that mimic those caused by axotomy. Exp Neurol 154:381–388

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ministry of Science and Technology of China (No.2002CB512907), and National Natural Science Fund of China (No. 271138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keqin Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, F., Zhang, C., Yu, S. et al. Time-dependent Alteration of Cytoskeletal Proteins in Cerebral Cortex of Rat During 2,5-Hexanedione-induced Neuropathy. Neurochem Res 32, 1407–1414 (2007). https://doi.org/10.1007/s11064-007-9325-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9325-x

Keywords

Navigation