Skip to main content

Advertisement

Log in

Inhibition of Melatonin Biosynthesis Induces Neurofilament Hyperphosphorylation with Activation of Cyclin-dependent Kinase 5

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Decreased level of melatonin and hyperphosphorylation of neurofilament proteins have been reported in Alzheimer’s disease (AD). However, the direct evidence linking melatonin and neurofilament phosphorylation is still lacking. Here, we investigated the effect of inhibiting melatonin biosynthesis on phosphorylation of neurofilament proteins and the involvement of cyclin-dependent kinase 5 (cdk-5) in rats. We observed that injection of haloperidol, a specific inhibitor of 5-hydroxyindole-O-methyltransferase, resulted in significantly decreased level of serum melatonin with a concomitantly increased phosphorylation of neurofilament proteins and activation of cdk-5 in rats. Exogenous supplementation of melatonin partially arrested the hyperphosphorylation of neurofilament and the activation of cdk-5. These results suggest that inhibition of melatonin biosynthesis may activate cdk-5 and thus induces Alzheimer-like hyperphosphorylation of neurofilament proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arriagada PV, Growdon JH, Hedley-Whyte ET et al (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42:631–639

    PubMed  CAS  Google Scholar 

  2. Sternberger LA, Sternberger NH, Vlrich J (1985) Aberrant neurofilament phosphorylation in Alzheimer’s disease. Proc Nat1 Acad Sci 82:4274–4276

    Article  CAS  Google Scholar 

  3. Wang JZ, Tung YC, Wang YP et al (2001) Hyperphosphorylation and accumulation of neurofilament proteins in Alzheimer disease brain and in okadaic acid-treated SY5Y cells. FEBS Lett 507:81–87

    Article  PubMed  CAS  Google Scholar 

  4. Vickers JC, Costa M (1992) The NF triplet is present in distinct subpopulations of neurons in the central nervous system of the guinea-pig. Neuroscience 49:73–100

    Article  PubMed  CAS  Google Scholar 

  5. Rosengren LE, Karlsson JE, Sjogren M et al (1999) Neurofilament protein levels in CSF are increased in dementia. Neurology 52:1090–1093

    PubMed  CAS  Google Scholar 

  6. Brettschneider J, Petzold A, Schottle D et al (2006) The Neurofilament Heavy Chain (NfH) in the cerebrospinal fluid diagnosis of Alzheimer’s disease. Dement Geriatr Cogn Disord 21:291–295

    Article  PubMed  CAS  Google Scholar 

  7. Hu YY, He SS, Wang X et al (2002) Levels of nonphosphorylated and phosphorylated tau in cerebrospinal fluid of Alzheimer’s disease patients: an ultrasensitive bienzyme-substrate-recycle enzyme-linked immunosorbent assay. Am J Pathol 160:1269–1278

    PubMed  CAS  Google Scholar 

  8. Hu YY, He SS, Wang XC et al (2002) Elevated levels of phosphorylated neurofilament proteins in cerebrospinal fluid of Alzheimer disease patients. Neurosci Lett 320:156–160

    Article  PubMed  CAS  Google Scholar 

  9. Pierpaoli W, Lesnikov VA (1994) The pineal aging clock. Evidence, models, mechanisms, interventions. Ann N Y Acad Sci 719:461–473

    Article  PubMed  CAS  Google Scholar 

  10. Wu YH, Feenstra MG, Zhou JN et al (2003) Molecular changes underlying reduced pineal melatonin levels in Alzheimer disease: alterations in preclinical and clinical stages. J Clin Endocrinol Metab 88:5898–5906

    Article  PubMed  CAS  Google Scholar 

  11. Liu RY, Zhou JN, van Heerikhuize J et al (1999) Decreased melatonin levels in postmortem cerebrospinal fluid in relation to aging, Alzheimer’s disease, and apolipoprotein E-epsilon4/4 genotype. J Clin Endocrinol Metab 84:323–327

    Article  PubMed  CAS  Google Scholar 

  12. Cohen-Mansfield J, Garfinkel D, Lipson S (2000) Melatonin for treatment of sundowning in elderly persons with dementia: a preliminary study. Arch Gerontol Geriatr 31:65–76

    Article  CAS  PubMed  Google Scholar 

  13. Brusco LI, Marquez M, Cardinali DP (2000) Melatonin treatment stabilizes chronobiologic and cognitive symptoms in Alzheimer’s disease. Neuro Endocrinol Lett 21:39–42

    PubMed  Google Scholar 

  14. Cardinali DP, Brusco LI, Liberczuk C et al (2002) The use of melatonin in Alzheimer’s disease. Neuro Endocrinol Lett 23(Suppl 1):20–22

    PubMed  CAS  Google Scholar 

  15. Zhou JN, Liu RY, Kamphorst W et al (2003) Early neuropathological Alzheimer’s changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels. J Pineal Res 35:125–130

    Article  PubMed  CAS  Google Scholar 

  16. Pappolla MA, Simovich MJ, Bryant-Thomas T et al (2002) The neuroprotective activities of melatonin against the Alzheimer beta-protein are not mediated by melatonin membrane receptors. J Pineal Res 32:135–142

    Article  PubMed  CAS  Google Scholar 

  17. Lahiri DK (1999) Melatonin affects the metabolism of the beta-amyloid precursor protein in different cell types. J Pineal Res 26:137–146

    Article  PubMed  CAS  Google Scholar 

  18. Liu SJ, Wang JZ (2002) Alzheimer-like tau phosphorylation induced by Wortmannin in vivo and its attention by melatonin. Acta Pharmacol Sin 23:183–187

    PubMed  CAS  Google Scholar 

  19. Li SP, Deng YQ, Wang XC et al (2004) Melatonin protects SH-SY5Y neuroblastoma cells from calyculin-induced neurofilament impairment and neurotoxicity. J Pineal Res 36:186–191

    Article  PubMed  CAS  Google Scholar 

  20. Zhu LQ, Wang SH, Ling ZQ, Wang DL, Wang JZ (2004) Effect of inhibiting melatonin biosynthesis on spatial memory retention and tau phosphorylation in rat. J Pineal Res 37:71–77

    Article  PubMed  CAS  Google Scholar 

  21. Mata M, Honegger P, Fink DJ (1997) Modulation of phosphorylation of neuronal cytoskeletal proteins by neuronal depolarization. Cell Mol Neurobiol 17:129–140

    Article  PubMed  Google Scholar 

  22. Satake N, Morton BE (1979) Scotophobin A causes dark avoidance in goldfish by elevating pineal N-acetylserotonin. Pharmacol Biochem Behav 10:449–456

    Article  PubMed  CAS  Google Scholar 

  23. Cremer-Bartels G, Ebels I, Sykes JE et al (1983) Effects of retinal and pineal low molecular weight fractions and antipsychotic drugs on hydroxyindole-O-methyltransferase. J Neural Transm 58:107–119

    Article  PubMed  CAS  Google Scholar 

  24. Paxinos G, Watson C, Pernnisi M et al (1985) Bregma, lambda and the interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight. J Neurosci Methods 13:139–143

    Article  PubMed  CAS  Google Scholar 

  25. Qi Z, Huang QQ, Lee KY et al (1995) Reconstitution of neuronal Cdc2-like kinase from bacteria-expressed Cdk5 and an active fragment of the brain-specific activator. Kinase activation in the absence of Cdk5 phosphorylation. J Biol Chem 270:10847–10854

    Article  PubMed  CAS  Google Scholar 

  26. Bechgaard E, Lindhardt K, Martinsen L (1998) High-performance liquid chromatographic analysis of melatonin in human plasma and rabbit serum with on-line column enrichment. J Chromatogr B Biomed Sci Appl 712:177–181

    Article  PubMed  CAS  Google Scholar 

  27. Julien JP, Mushynski WE (1998) Neurofilament in health and disease. Prog Nucleic Acid Res Mol Biol 61:1–23

    Article  PubMed  CAS  Google Scholar 

  28. Wang JZ, Wang ZF (2006) Role of melatonin in Alzheimer-like neurodegeneration. Acta Pharmacol Sin 27:41–49

    Article  PubMed  CAS  Google Scholar 

  29. Sayre LM, Smith MA, Perry G (2001) Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem 8:721–738

    PubMed  CAS  Google Scholar 

  30. Monte SM, Ganju N, Feroz N et al (2000) Oxygen free radical injury is sufficient to cause some Alzheimer-type molecular abnormalities in human CNS neuronal cells. J Alzheimers Dis 2:261–281

    PubMed  Google Scholar 

  31. Liu SJ, Fang ZY, Yang Y (2003) Alzheimer-like phosphorylation of tau and neurofilament induced by cocaine in vivo. Acta Pharmacol Sin 24:512–518

    PubMed  CAS  Google Scholar 

  32. Patrick GN, Zukerberg L, Nikolic M (1999) Conversion of p35 to p25 deregulates cdk-5 activity and promotes neurodegeneration. Nature 402:615–622

    Article  PubMed  CAS  Google Scholar 

  33. Mallo C, Zaidan R, Galy G et al (1990) Pharmacokinetics of melatonin in man after intravenous infusion and bolus injection. Eur J Clin Pharmacol 38:297–301

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs Khalid Iqbal and Inge Grundke-Iqbal from NYS Institute for Basic Research for support of reagents and scientific discussions. We thank Dr Cheng-Xin Gong from the same institute for prove-reading of the paper. This work was supported in part by grants from the Natural Science Foundation of China (30430270, 30472030 and 30400068), and the Science and Technology Committee of China (2006CB500703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Zhi Wang.

Additional information

S. Wang and L. Zhu contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Zhu, L., Shi, H. et al. Inhibition of Melatonin Biosynthesis Induces Neurofilament Hyperphosphorylation with Activation of Cyclin-dependent Kinase 5. Neurochem Res 32, 1329–1335 (2007). https://doi.org/10.1007/s11064-007-9308-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9308-y

Keywords

Navigation