Skip to main content
Log in

Effect of Resuscitation with 21% Oxygen and 100% Oxygen on NMDA Receptor Binding Characteristics Following Asphyxia in Newborn Piglets

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The present study investigated the effect of reventilation with 21% and 100% oxygen following asphyxia in newborn piglets on NMDA receptor binding characteristics, Na+, K+-ATPase activity, and lipid peroxidation. After achieving a heart rate less than 60 beats per minute, asphyxiated piglets were reventilated with 21% oxygen or 100% oxygen. 3[H]MK-801 binding showed the Bmax in the 21% and 100% groups to be 1.53 ± 0.43 and 1.42 ± 0.35 pmol/mg protein (p = ns). Values for Kd were 4.56 ± 1.29 and 4.17 ± 1.05 nM (p = ns). Na+, K+-ATPase activity in the 21% and 100% groups were 23.5 ± 0.9 and 24.4 ± 3.9 μmol Pi/mg protein/h (p = ns). Conjugated dienes (0.05 ± 0.02 vs. 0.07 ± 0.03 μmol/g brain) and fluorescent compounds (0.54 ± 0.05 vs. 0.78 ±  0.19 μg quinine sulfate/g brain), were similar in both groups (p = ns). Though lipid peroxidation products trended higher in the 100% group, these data show that NMDA receptor binding and Na+, K+-ATPase activity were similar following reventilation with 21% or 100% oxygen after a single episode of mild asphyxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. American Academy of Pediatrics and American Heart Association (2006) Textbook of Neonatal Resuscitation, 5th edn

  2. Tan A, Schulze A, O'Donnell CPF, Davis PG (2006) Air versus oxygen for resuscitation of infants at birth (Cochrane Review). In: The Cochrane Library, Issue 4, Oxford: Update Software

  3. Tollofsrud PA, Solas AB, Saugstad OD (2001) Newborn piglets with meconium aspiration resuscitated with room air or 100% oxygen. Pediatr Res 50:423–429

    Article  PubMed  CAS  Google Scholar 

  4. Saugstad OD, Rootwelt T, Aalen O (1998) Resuscitation of asphyxiated newborn infants with room air or oxygen: an international controlled trial: the Resair 2 study. Pediatrics 102(1): http://www.pediatrics.org/cgi/content/full/102/1/e1

  5. Ramjii S, Ahuja S, Thirupuram S et al (1993) Resuscitation of asphyxic newborn infants with room air or 100% oxygen. Pediatr Res 34:809–812

    Article  Google Scholar 

  6. Vento M, Asensi M, Sastre J (2001) Resuscittaion with room air instead of 100% oxygen prevents oxidative stress in moderately asphyxiated term neonates. Pediatrics 107:642–647

    Article  PubMed  CAS  Google Scholar 

  7. Saugstad OD, Ramji, Vento M (2004) Resuscitation of depressed newborn infants with ambient air or pure oxygen: a meta-analysis. Biol Neonate 87:27–34

    Article  PubMed  Google Scholar 

  8. McCord JM (1985) Oxygen-deprived free radicals in postischemic tissue injury. N Eng J Med 312:159–163

    Article  CAS  Google Scholar 

  9. Mishra OP, Delivoria-Papadopoulos M (1988) Anti-oxidant enzymes in fetal guinea pig brain during development and the effect of maternal hypoxia. Dev Brain Res 42:173–179

    Article  CAS  Google Scholar 

  10. Mishra OP, Delivoria-Papadopoulos M (1989) Lipid peroxidation in developing fetal guinea pig brain and the effect of maternal hypoxia. Dev Brain Res 45:129–135

    Article  CAS  Google Scholar 

  11. Braughler JM, Hall ED (1989) Central nervous system trauma and stroke: biochemical considerations for oxygen radical formation and lipid peroxidation. Free Radic Biol Med 6:289–301

    Article  PubMed  CAS  Google Scholar 

  12. Sinet PM, Keikkila RE, Cohen G (1980) Hydrogen peroxide production by rat brain in vivo. J Neurochem 34:1421–1426

    Article  PubMed  CAS  Google Scholar 

  13. Kovachich GB, Mishra OP (1981) Partial inactivation of Na+, K+-ATPase in cortical brain slices incubated in normal Krebs-Ringer phosphate medium at 1 and 10 atm oxygen pressure. J Neurochem 36:333–335

    Article  PubMed  CAS  Google Scholar 

  14. DiGiacomo JE, Pane CR, Gwiazdownski S et al (1992) Effect of graded hypoxia on brain cell membrane injury in newborn piglets. Biol Neonate 61:25–32

    Article  PubMed  CAS  Google Scholar 

  15. Mishra OP, Fritz KI, Delivoria-Papadopoulos M (2001) NMDA receptor and neonatal hypoxic brain injury. Mental Retard Develop Disabil Res Rev 7:249–253

    Article  CAS  Google Scholar 

  16. Hoffman DJ, McGowan JE, Marro PJ et al (1994) Hypoxia-induced modification of the N-methyl-d-aspartate (NMDA) receptor in brain of newborn piglets. Neurosc Lett 167:156–160

    Article  CAS  Google Scholar 

  17. Delivoria-Papadopoulos M, Akhter W, Mishra OP (2003) Hypoxia-induced Ca++-influx in cerebral cortical nuclei of newborn piglets. Neurosci Lett 342:119–123

    Article  PubMed  CAS  Google Scholar 

  18. Ravishanker S, Ashraf QM, Fritz K et al (2001) Expression of Bax and Bcl-2 proteins during hypoxia in cerebral cortical nuclei of newborn piglets: effect of administration of magnesium sulfate. Brain Res 91:23–29

    Article  Google Scholar 

  19. Delivoria-Papadopoulos M, Mishra OP (2004) Nuclear mechanisms of hypoxic cerebral injury of the newborn. Clin Perinatol 31:91–105

    Article  PubMed  Google Scholar 

  20. Johnston MV (2005) Excitotoxicity in perinatal brain injury. Brain Pathol 15:234–240

    Article  PubMed  CAS  Google Scholar 

  21. Williams K, Romano C, Molinoff PB (1989) Effects of polyamines on the binding of 3H-MK-801 to the N-methyl-d-aspartate receptor: pharmacological evidence for the existence of a polyamine recognition site. Molec Pharmacol 36:575–581

    CAS  Google Scholar 

  22. Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  23. Folch-Pi J, Lees MJ, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissue. J Biol Chem 226:497–509

    CAS  Google Scholar 

  24. Dillard CJ, Tappel AL (1957) Fluorescent products of lipid peroxidation in mitochondria and microsomes. Lipids 226:497–509

    Google Scholar 

  25. Lamprecht W, Stein P, Heinz F, Weisser H (1974) Creatine phosphate. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol. 4. Academic Press, New York, pp 1777–1781

    Google Scholar 

  26. Rosenberg AA, Murdaugh E, White CW (1989) The role of oxygen free radicals in postasphyxia cerebral hypoperfusion in newborn lambs. Pediatr Res 26:215–219

    Article  PubMed  CAS  Google Scholar 

  27. Munkeby BH, Borke WB, Bjornland K et al (2004) Resuscitation with 100% O2 increases cerebral injury in hypoxemic piglets. Pediatr Res 56:783–790

    Article  PubMed  CAS  Google Scholar 

  28. Vento M, Sastre J, Asensi MA et al (2005) Room-air resuscitation causes less damage to heart and kidney than 100% oxygen. Am J Respir Crit Care Med 172:1393–1398

    Article  PubMed  Google Scholar 

  29. Munkeby BH, Borke WB, Bjornland K et al (2005) Resuscitation of hypoxic piglets with 100% O2 increases pulmonary metalloproteinases and IL-8. Pediatr Res 58:542–548

    Article  PubMed  CAS  Google Scholar 

  30. Fugelseth D, Borke WB, Lenes K et al (2005) Restoration of cardiopulmonary function with 21% versus 100% oxygen after hypoxaemia in newborn pigs. Arch Dis Child Fetal Neonatal Ed 90:F229–234

    Article  PubMed  CAS  Google Scholar 

  31. Haase E, Bigam DL, Nakonechny QB et al (2004) Resuscitation with 100% oxygen causes intestinal glutathione oxidation and reoxygenation injury in asphyxiated newborn piglets. Ann Surg 240:364–373

    Article  PubMed  Google Scholar 

  32. Rootwelt T, Lobert EM, Moen A et al (1992) Hypoxemia and reoxygenation with 21% or 100% oxygen on newborn pigs: changes in blood pressure, base deficit, and hypoxanthine and brain morphology. Pediatr Res 32:107–113

    PubMed  CAS  Google Scholar 

  33. Rootwelt T, Odden JP, Hall C et al (1993) Cerebral blood flow and evoked potentials during reoxygenation with 21% or 100% O2 in newborn pigs. J Appl Physiol 75:2054–2060

    PubMed  CAS  Google Scholar 

  34. Feet BA, Gilland E, Groenendaal F et al (1998) Cerebral excitatory amino acids and Na+, K+-ATPase activity during resuscitation of severely hypoxic newborn piglets. Acta Paediatr 87:889–895

    Article  PubMed  CAS  Google Scholar 

  35. Goplerud JM, Kim S, Delivoria-Papadopoulos M (1995) The effect of post-asphyxial reoxygenation with 21% vs. 100% oxygen on Na+, K+-ATPase activity in striatum of newborn piglets. Brain Res 696:161–164

    Article  PubMed  CAS  Google Scholar 

  36. Marro PJ, Hoffman D, Schneiderman R et al (1998) Effect of allopurinol on NMDA receptor modification following recurrent asphyxia in newborn piglets. Brain Res 787:71

    Article  PubMed  CAS  Google Scholar 

  37. Mishra OP, Delivoria-Papadopoulos M (1988) Na+, K+-ATPase in developing fetal guinea pig brain and the effect of maternal hypoxia. Neurochem Res 13:765–770

    Article  PubMed  CAS  Google Scholar 

  38. Huang CC, Yonetani M, Lajevardi N et al (1995) Comparison of postasphyxial resuscitation with 100% and 21% oxygen on cortical oxygen pressure and striatal dopamine metabolism in newborn piglets. J Neurochem 64:292–298

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I dedicate this work to the memory of E. Gregory Keating, Ph.D. The authors thank Ms. Joanna Kubin and Ms. AnLi Zhu for their expert technical support, and Karen Rudisill for assistance with manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Joseph Hoffman.

Additional information

Funded in part by a grant from the American Academy of Pediatrics/American Heart Association/Neonatal Resuscitation Program and NIH grant number HD-20337.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffman, D.J., Lombardini, E., Mishra, O.P. et al. Effect of Resuscitation with 21% Oxygen and 100% Oxygen on NMDA Receptor Binding Characteristics Following Asphyxia in Newborn Piglets. Neurochem Res 32, 1322–1328 (2007). https://doi.org/10.1007/s11064-007-9307-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9307-z

Keywords

Navigation