Skip to main content
Log in

The Zinc-Binding Protein Chordc1 Undergoes Complex Diurnal Changes in mRNA Expression During Mouse Brain Development

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Diurnal changes in Chordc1 mRNA were recently described in mouse hypothalamus. This report shows that Chordc1 mRNA changes rhythmically throughout the entire adult brain with highest expression levels occurring around the dark–light transition. The rhythmic cycling pattern of Chordc1 was retained under various light–dark schedules and analysis of adult whole brain revealed diurnal patterns that were different than young animals (postnatal day (P) 6). Analysis of adult hippocampus, prefrontal cortex and cerebellum confirmed these observations and a comparison between adult and P6 animals using in situ hybridization indicated that Chordc1 underwent coordinated but altered diurnal changes in mRNA abundance during development. Further, a developmental profile of Chordc1 expression beginning at embryonic day 17 revealed a regional distribution of Chordc1 consistent with its adult pattern. These results suggest that Chordc1 mRNA is under complex and widespread transcriptional regulation during development and implicate Chordc1 in circadian and/or homeostatic mechanisms in mammalian brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shirasu K, Lahaye T, Tan MW et al (1999) A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans. Cell 99:355–366

    Article  PubMed  CAS  Google Scholar 

  2. Brancaccio M, Menini N, Bongioanni D et al (2003) Chp-1 and melusin, two CHORD containing proteins in vertebrates. FEBS Lett 551:47–52

    Article  PubMed  CAS  Google Scholar 

  3. Azevedo C, Sadanandom A, Kitagawa K et al (2002) The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295:2073–2076

    Article  PubMed  CAS  Google Scholar 

  4. Takahashi A, Casais C, Ichimura K et al (2003) HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in arabidopsis. Proc Natl Acad Sci USA 100:11777–11782

    Article  PubMed  CAS  Google Scholar 

  5. Holt BF 3rd, Belkhadir Y, Dangl JL (2005) Antagonistic control of disease resistance protein stability in the plant immune system. Science 309:929–932

    Article  PubMed  CAS  Google Scholar 

  6. Lee YT, Jacob J, Michowski W et al (2004) Human Sgt1 binds HSP90 through the CHORD-Sgt1 domain and not the tetratricopeptide repeat domain. J Biol Chem 279:16511–16517

    Article  PubMed  CAS  Google Scholar 

  7. Hahn JS (2005) Regulation of Nod1 by Hsp90 chaperone complex. FEBS Lett 579:4513–4519

    Article  PubMed  CAS  Google Scholar 

  8. Wu J, Luo S, Jiang H et al (2005) Mammalian CHORD-containing protein 1 is a novel heat shock protein 90-interacting protein. FEBS Lett 579:421–426

    Article  PubMed  CAS  Google Scholar 

  9. Brancaccio M, Guazzone S, Menini N et al (1999) Melusin is a new muscle-specific interactor for beta(1) integrin cytoplasmic domain. J Biol Chem 274:29282–29288

    Article  PubMed  CAS  Google Scholar 

  10. Brancaccio M, Fratta L, Notte A et al (2003) Melusin, a muscle-specific integrin beta1-interacting protein, is required to prevent cardiac failure in response to chronic pressure overload. Nat Med 9:68–75

    Article  PubMed  CAS  Google Scholar 

  11. Gerstner JR, Vander Heyden WM, Lavaute TM et al (2006) Profiles of novel diurnally regulated genes in mouse hypothalamus: expression analysis of the cysteine and histidine-rich domain-containing, zinc-binding protein 1, the fatty acid-binding protein 7 and the GTPase, ras-like family member 11b. Neuroscience 139:1435–1448

    Article  PubMed  CAS  Google Scholar 

  12. Schiltz CA, Kelley AE, Landry CF (2005) Contextual cues associated with nicotine administration increase arc mRNA expression in corticolimbic areas of the rat brain. Eur J Neurosci 21:1703–1711

    Article  PubMed  Google Scholar 

  13. Roseboom PH, Coon SL, Baler R et al (1996) Melatonin synthesis: analysis of the more than 150-fold nocturnal increase in serotonin N-acetyltransferase messenger ribonucleic acid in the rat pineal gland. Endocrinology 137:3033–3045

    Article  PubMed  CAS  Google Scholar 

  14. Ueda HR, Chen W, Adachi A et al (2002) A transcription factor response element for gene expression during circadian night. Nature 418:534–539

    Article  PubMed  CAS  Google Scholar 

  15. Weinert D (2005) Ontogenetic development of the mammalian circadian system. Chronobiol Int 22:179–205

    Article  PubMed  Google Scholar 

  16. Reppert SM, Schwartz WJ (1984) The suprachiasmatic nuclei of the fetal rat: characterization of a functional circadian clock using 14C-labeled deoxyglucose. J Neurosci 4:1677–1682

    PubMed  CAS  Google Scholar 

  17. Shibata S, Moore RY (1987) Development of neuronal activity in the rat suprachiasmatic nucleus. Brain Res 431:311–315

    PubMed  CAS  Google Scholar 

  18. Shimomura H, Moriya T, Sudo M et al (2001) Differential daily expression of Per1 and Per2 mRNA in the suprachiasmatic nucleus of fetal and early postnatal mice. Eur J Neurosci 13:687–693

    Article  PubMed  CAS  Google Scholar 

  19. Sladek M, Sumova A, Kovacikova Z et al (2004) Insight into molecular core clock mechanism of embryonic and early postnatal rat suprachiasmatic nucleus. Proc Natl Acad Sci USA 101:6231–6236

    Article  PubMed  CAS  Google Scholar 

  20. Ohta H, Honma S, Abe H et al (2003) Periodic absence of nursing mothers phase-shifts circadian rhythms of clock genes in the suprachiasmatic nucleus of rat pups. Eur J Neurosci 17:1628–1634

    Article  PubMed  Google Scholar 

  21. Viswanathan N, Chandrashekaran MK (1985) Cycles of presence and absence of mother mouse entrain the circadian clock of pups. Nature 317:530–531

    Article  PubMed  CAS  Google Scholar 

  22. Viswanathan N (1999) Maternal entrainment in the circadian activity rhythm of laboratory mouse (C57BL/6J). Physiol Behav 68:157–162

    Article  PubMed  CAS  Google Scholar 

  23. Hayaishi O (1991) Molecular mechanisms of sleep-wake regulation: roles of prostaglandins D2 and E2. FASEB J 5:2575–2581

    PubMed  CAS  Google Scholar 

  24. Tanioka T, Nakatani Y, Semmyo N et al (2000) Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosynthesis. J Biol Chem 275:32775–32782

    Article  PubMed  CAS  Google Scholar 

  25. Tanioka T, Nakatani Y, Kobayashi T et al (2003) Regulation of cytosolic prostaglandin E2 synthase by 90-kDa heat shock protein. Biochem Biophys Res Commun 303:1018–1023

    Article  PubMed  CAS  Google Scholar 

  26. Kazlauskas A, Poellinger L, Pongratz I (1999) Evidence that the co-chaperone p23 regulates ligand responsiveness of the dioxin (aryl hydrocarbon) receptor. J Biol Chem 274:13519–13524

    Article  PubMed  CAS  Google Scholar 

  27. Cox MB, Miller CA 3rd (2002) The p23 co-chaperone facilitates dioxin receptor signaling in a yeast model system. Toxicol Lett 129:13–21

    Article  PubMed  CAS  Google Scholar 

  28. Carlson DB, Perdew GH (2002) A dynamic role for the ah receptor in cell signaling? insights from a diverse group of ah receptor interacting proteins. J Biochem Mol Toxicol 16:317–325

    Article  PubMed  CAS  Google Scholar 

  29. Shetty PV, Bhagwat BY, Chan WK (2003) P23 enhances the formation of the aryl hydrocarbon receptor-DNA complex. Biochem Pharmacol 65:941–948

    Article  PubMed  CAS  Google Scholar 

  30. Mandal PK (2005) Dioxin: a review of its environmental effects and its aryl hydrocarbon receptor biology. J Comp Physiol [B] 175:221–230

    CAS  Google Scholar 

  31. Bunger MK, Wilsbacher LD, Moran SM et al (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103:1009–1017

    Article  PubMed  CAS  Google Scholar 

  32. Laposky A, Easton A, Dugovic C et al (2005) Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation. Sleep 28:395–409

    PubMed  Google Scholar 

Download references

Acknowledgments

This work is in honor of Tony and Celia Campagnoni, my mentors and close friends. We would like to thank Andrew M. Brienen and Quentin Bremer for excellent technical assistance. This work was supported by National Institute of Heath grant 5 P50 CA084724-04 to J.R.G. and DA13780 to C.F.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles F. Landry.

Additional information

Special issue dedicated to Anthony Campagnoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerstner, J.R., Landry, C.F. The Zinc-Binding Protein Chordc1 Undergoes Complex Diurnal Changes in mRNA Expression During Mouse Brain Development. Neurochem Res 32, 241–250 (2007). https://doi.org/10.1007/s11064-006-9271-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9271-z

Keywords

Navigation