Skip to main content

Advertisement

Log in

Human Mesenchymal Stem Cells Signals Regulate Neural Stem Cell Fate

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neural stem cells (NSCs) differentiate into neurons, astrocytes and oligodendrocytes depending on their location within the central nervous system (CNS). The cellular and molecular cues mediating end-stage cell fate choices are not completely understood. The retention of multipotent NSCs in the adult CNS raises the possibility that selective recruitment of their progeny to specific lineages may facilitate repair in a spectrum of neuropathological conditions. Previous studies suggest that adult human bone marrow derived mesenchymal stem cells (hMSCs) improve functional outcome after a wide range of CNS insults, probably through their trophic influence. In the context of such trophic activity, here we demonstrate that hMSCs in culture provide humoral signals that selectively promote the genesis of neurons and oligodendrocytes from NSCs. Cell–cell contacts were less effective and the proportion of hMSCs that could be induced to express neural characteristics was very small. We propose that the selective promotion of neuronal and oligodendroglial fates in neural stem cell progeny is responsible for the ability of MSCs to enhance recovery after a wide range of CNS injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reynolds BA, Rietze RL (2005) Neural stem cells and neurospheres—re-evaluating the relationship. Nat Methods 2:333–336

    Article  PubMed  CAS  Google Scholar 

  2. Pluchino S et al (2005) Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436:266–271

    Article  PubMed  CAS  Google Scholar 

  3. Bossolasco P et al (2005) Neuro-glial differentiation of human bone marrow stem cells in vitro. Exp Neurol 193:312–325

    Article  PubMed  CAS  Google Scholar 

  4. Wislet-Gendebien S et al (2005) Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Stem Cells 23:392–402

    Article  PubMed  CAS  Google Scholar 

  5. Li Y et al (2005) Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia 49:407–417

    Article  PubMed  Google Scholar 

  6. Deng YB et al (2006) Implantation of BM mesenchymal stem cells into injured spinal cord elicits de novo neurogenesis and functional recovery: evidence from a study in rhesus monkeys. Cytotherapy 8:210–214

    Article  PubMed  Google Scholar 

  7. Pittenger MF et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  8. Ferrari G et al (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530

    Article  PubMed  CAS  Google Scholar 

  9. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    Article  PubMed  CAS  Google Scholar 

  10. Deans RJ, Moseley AB (2000) Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28:875–884

    Article  PubMed  CAS  Google Scholar 

  11. Sanchez-Ramos J et al (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164:247–256

    Article  PubMed  CAS  Google Scholar 

  12. Lu P, Blesch A, Tuszynski MH (2004) Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact? J Neurosci Res 77:174–191

    Article  PubMed  CAS  Google Scholar 

  13. Keilhoff G et al (2006) Transdifferentiation of mesenchymal stem cells into Schwann cell-like myelinating cells. Eur J Cell Biol 85:11–24

    Article  PubMed  CAS  Google Scholar 

  14. Kang SK et al (2003) Interactions between human adipose stromal cells and mouse neural stem cells in vitro. Brain Res Dev Brain Res 145:141–149

    Article  PubMed  CAS  Google Scholar 

  15. Bonab MM et al (2006) Aging of mesenchymal stem cell in vitro. BMC Cell Biol 7:14

    Article  PubMed  CAS  Google Scholar 

  16. Itoh T et al (2005) Isolation of neural stem cells from damaged rat cerebral cortex after traumatic brain injury. Neuroreport 16:1687–1691

    Article  PubMed  Google Scholar 

  17. Mingorance A et al (2005) Overexpression of myelin-associated glycoprotein after axotomy of the perforant pathway. Mol Cell Neurosci 29:471–483

    Article  PubMed  CAS  Google Scholar 

  18. Bryceson YT et al (2005) Expression of a killer cell receptor-like gene in plastic regions of the central nervous system. J Neuroimmunol 161:177–182

    Article  PubMed  CAS  Google Scholar 

  19. Soukup T et al (2006) Mesenchymal stem cells isolated from the human bone marrow: cultivation, phenotypic analysis and changes in proliferation kinetics. Acta Medica (Hradec Kralove) 49:27–33

    Google Scholar 

  20. Barry F et al (2001) The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells. Biochem Biophys Res Commun 289:519–524

    Article  PubMed  CAS  Google Scholar 

  21. Mothe AJ et al (2005) Analysis of green fluorescent protein expression in transgenic rats for tracking transplanted neural stem/progenitor cells. J Histochem Cytochem 53:1215–1226

    Article  PubMed  CAS  Google Scholar 

  22. Deng J et al (2006) Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells 24:1054–1064

    Article  PubMed  CAS  Google Scholar 

  23. Bertani N et al (2006) Neurogenic potential of human mesenchymal stem cells revisited: analysis by immunostaining, timelapse video and microarray. J Cell Sci 118:3925–3936

    Article  CAS  Google Scholar 

  24. Ribotta MG, Menet V, Privat A (2004) Glial scar and axonal regeneration in the CNS: lessons from GFAP and vimentin transgenic mice. Acta Neurochir Suppl 89:87–92

    PubMed  CAS  Google Scholar 

  25. Andrae J et al (2004) Forced expression of platelet-derived growth factor B in the mouse cerebellar primordium changes cell migration during midline fusion and causes cerebellar ectopia. Mol Cell Neurosci 26:308–321

    Article  PubMed  CAS  Google Scholar 

  26. Vasyutina E et al (2005) CXCR4 and Gab1 cooperate to control the development of migrating muscle progenitor cells. Genes Dev 19:2187–2198

    Article  PubMed  CAS  Google Scholar 

  27. Ge Y et al (2006) Fibroblast activation protein (FAP) is upregulated in myelomatous bone and supports myeloma cell survival. Br J Haematol 133:83–92

    Article  PubMed  CAS  Google Scholar 

  28. Kawasaki H et al (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28:31–40

    Article  PubMed  CAS  Google Scholar 

  29. Kawasaki H et al (2002) Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc Natl Acad Sci USA 99:1580–1585

    Article  PubMed  CAS  Google Scholar 

  30. Conget PA, Minguell JJ (1999) Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 181:67–73

    Article  PubMed  CAS  Google Scholar 

  31. Hanabusa K et al (2005) Adrenomedullin enhances therapeutic potency of mesenchymal stem cells after experimental stroke in rats. Stroke 36:853–858

    Article  PubMed  CAS  Google Scholar 

  32. Ito J et al (2005) A new method for drug application to the inner ear. ORL J Otorhinolaryngol Relat Spec 67:272–275

    PubMed  Google Scholar 

  33. Tsai HH et al (2002) The chemokine receptor CXCR2 controls positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration. Cell 110:373–383

    Article  PubMed  CAS  Google Scholar 

  34. Studeny M et al (2004) Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 96:1593–1603

    Article  PubMed  CAS  Google Scholar 

  35. Wang L et al (2002) Ischemic cerebral tissue and MCP-1 enhance rat bone marrow stromal cell migration in interface culture. Exp Hematol 30:831–836

    Article  PubMed  CAS  Google Scholar 

  36. Bhakta S, Hong P, Koc O (2006) The surface adhesion molecule CXCR4 stimulates mesenchymal stem cell migration to stromal cell-derived factor-1 in vitro but does not decrease apoptosis under serum deprivation. Cardiovasc Revasc Med 7:19–24

    Article  PubMed  Google Scholar 

  37. Lu ZL, Lesmes LA, Sperling G (1999) The mechanism of isoluminant chromatic motion perception. Proc Natl Acad Sci USA 96:8289–8294

    Article  PubMed  CAS  Google Scholar 

  38. Abu-Ghazaleh R et al (2001) Src mediates stimulation by vascular endothelial growth factor of the phosphorylation of focal adhesion kinase at tyrosine 861, and migration and anti-apoptosis in endothelial cells. Biochem J 360:255–264

    Article  PubMed  CAS  Google Scholar 

  39. Ruoslahti E (1997) Integrins as signaling molecules and targets for tumor therapy. Kidney Int 51:1413–1417

    PubMed  CAS  Google Scholar 

  40. Gregory CA, Ylostalo J, Prockop DJ (2005) Adult bone marrow stem/progenitor cells (MSCs) are preconditioned by microenvironmental “niches” in culture: a two-stage hypothesis for regulation of MSC fate. Sci STKE 2005, pe37

  41. Haggiag S et al (2001) Stimulation of myelin gene expression in vitro and of sciatic nerve remyelination by interleukin-6 receptor-interleukin-6 chimera. J Neurosci Res 64:564–574

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Madjid Belkadi and Rae Wang for help with technical aspects of the manuscript and Anne DeChant for her help with graphics and editorial comments. This work was supported by funds from the Center for Stem Cells and Regenerative Medicine and the Myelin Repair Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Miller.

Additional information

Special issue dedicated to Anthony Campagnoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, L., Caplan, A., Lennon, D. et al. Human Mesenchymal Stem Cells Signals Regulate Neural Stem Cell Fate. Neurochem Res 32, 353–362 (2007). https://doi.org/10.1007/s11064-006-9212-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9212-x

Keywords

Navigation