Neurochemical Research

, Volume 32, Issue 4–5, pp 751–756 | Cite as

Tetrahydrobiopterin Availability in Parkinson’s and Alzheimer’s Disease; Potential Pathogenic Mechanisms

  • Richard H. Foxton
  • John M. Land
  • Simon J. R. HealesEmail author
Original Paper


Within the central nervous system, tetrahydrobiopterin (BH4) is an essential cofactor for dopamine and serotonin synthesis. In addition, BH4 is now established to be an essential cofactor for all isoforms of nitric oxide synthase (NOS). Inborn errors of metabolism affecting BH4 availability are well documented and the clinical presentation can be attributed to a paucity of dopamine, serotonin, and nitric oxide (NO) generation. In this article, we have focussed upon the sensitivity of BH4 to oxidative catabolism and the observation that when BH4 is limiting some cellular sources of NOS may generate superoxide whilst other BH4 saturated NOS enzymes may be generating NO. Such a scenario could favor peroxynitrite generation. If peroxynitrite is not scavenged, e.g., by antioxidants such as reduced glutathione, irreversible damage to critical cellular enzymes could ensue. Such targets include components of the mitochondrial electron transport chain, alpha ketoglutarate dehydrogenase and possibly pyruvate dehydrogenase. Such a cascade of events is hypothesized, in this article, to occur in neurodegerative conditions such as Parkinson’s and Alzheimer’s disease.


Tetrahydrobiopterin Parkinson’s Alzheimers Nitric oxide Nitrosative stress 



We are grateful to the Brain Research Trust and Medical Research Council (UK) who have supported our research into BH4 metabolism.


  1. 1.
    Kaufman S (1997) Tetrahydrobiopterin. basic biochemistry and role in human disease. John Hopkins University Press, Baltimore and LondonGoogle Scholar
  2. 2.
    Maita N, Hatakeyama K, Okada K, Hakoshima T (2004) Structural basis of biopterin induced inhibition of GTP cyclohydrolase I by GFRP, its feedback regulatory protein. J Biol Chem 279(49):51534–51540PubMedCrossRefGoogle Scholar
  3. 3.
    Gross SS, Levi R (1992) Tetrahydrobiopterin synthesis. an absolute requirement for cytokine-induced nitric oxide generation by vascular smooth muscle. J Biol Chem 267(36):25722–25729PubMedGoogle Scholar
  4. 4.
    Heales SJ, Lam AA, Duncan AJ, Land JM (2004) Neurodegeneration or neuroprotection: the pivotal role of astrocytes. Neurochem Res 29(3):513–519PubMedCrossRefGoogle Scholar
  5. 5.
    Werner ER, Gorren AC, Heller R, Werner-Felmayer G, Mayer B (2003) Tetrahydrobiopterin and nitric oxide: mechanistic and pharmacological aspects. Exp Biol Med 228(11):1291–1302Google Scholar
  6. 6.
    Brand MP, Heales SJ, Land JM, Clark JB (1995) Tetrahydrobiopterin deficiency and brain nitric oxide synthase in the hph1 mouse. J Inherit Metab Dis 18(1):33–39PubMedCrossRefGoogle Scholar
  7. 7.
    Heales SJ, Canevari L, Brand MP, Clark JB, Land JM, Hyland K (1999) Cerebrospinal fluid nitrite plus nitrate correlates with tetrahydrobiopterin concentration. J Inherit Metab Dis 22(3):221–223PubMedCrossRefGoogle Scholar
  8. 8.
    Zorzi G, Thony B, Blau N (2002) Reduced nitric oxide metabolites in CSF of patients with tetrahydrobiopterin deficiency. J Neurochem 80(2):362–364PubMedCrossRefGoogle Scholar
  9. 9.
    Heales SJ, Blair JA, Meinschad C, Ziegler I (1988) Inhibition of monocyte luminol-dependent chemiluminescence by tetrahydrobiopterin, and the free radical oxidation of tetrahydrobiopterin, dihydrobiopterin and dihydroneopterin. Cell Biochem Funct 6(3):191–195PubMedCrossRefGoogle Scholar
  10. 10.
    Gramsbergen JB, Sandberg M, Moller Dall A, Kornblit B, Zimmer J (2002) Glutathione depletion in nigrostriatal slice cultures: GABA loss, dopamine resistance and protection by the tetrahydrobiopterin precursor sepiapterin. Brain Res 935(1–2):47–58PubMedCrossRefGoogle Scholar
  11. 11.
    Lovenberg W, Levine RA, Robinson DS, Ebert M, Williams AC, Calne DB (1979) Hydroxylase cofactor activity in cerebrospinal fluid of normal subjects and patients with Parkinson’s disease. Science 204(4393):624–626PubMedCrossRefGoogle Scholar
  12. 12.
    Williams AC, Levine RA, Chase TN, Lovenberg W, Calne DB (1980) CFS hydroxylase cofactor levels in some neurological diseases. J Neurol Neurosurg Psychiatr 43(8):735–738PubMedGoogle Scholar
  13. 13.
    Barford PA, Blair JA, Eggar C, Hamon C, Morar C, Whitburn SB (1984) Tetrahydrobiopterin metabolism in the temporal lobe of patients dying with senile dementia of Alzheimer type. J Neurol Neurosurg Psychiatr 47(7):736–738PubMedCrossRefGoogle Scholar
  14. 14.
    Sawada M, Hirata Y, Arai H, Iizuka R, Nagatsu T (1987) Tyrosine hydroxylase, tryptophan hydroxylase, biopterin, and neopterin in the brains of normal controls and patients with senile dementia of Alzheimer type. J Neurochem 48(3):760–764PubMedCrossRefGoogle Scholar
  15. 15.
    Hunot S, Boissiere F, Faucheux B, Brugg B, Mouatt-Prigent A, Agid Y, Hirsch EC (1996) Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 72(2):355–363PubMedCrossRefGoogle Scholar
  16. 16.
    Good PF, Hsu A, Werner P, Perl DP, Olanow CW (1998) Protein nitration in Parkinson’s disease. J Neuropathol Exp Neurol 57(4):338–342PubMedGoogle Scholar
  17. 17.
    Qureshi GA, Baig S, Bednar I, Sodersten P, Forsberg G, Siden A (1995) Increased cerebrospinal fluid concentration of nitrite in Parkinson’s disease. Neuroreport 6(12):1642–1644PubMedCrossRefGoogle Scholar
  18. 18.
    Jenner P, Dexter DT, Sian J, Schapira AH, Marsden CD (1992) Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental Lewy body disease. the Royal Kings and Queens Parkinson’s disease research group. Ann Neurol 32(Suppl):S82–S87 (review)PubMedCrossRefGoogle Scholar
  19. 19.
    Blair JA, Pearson AJ (1974) Kinetics and mechanisms of the autoxidation of the 2-amin-4-hydroxy-5,6,7,8-tetrahydropterins. J Chem Soc Perkin Trans II 80–88Google Scholar
  20. 20.
    Smith MA, Richey Harris PL, Sayre LM, Beckman JS, Perry G (1997) Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J Neurosci 17(8):2653–2657PubMedGoogle Scholar
  21. 21.
    Vodovotz Y, Lucia MS, Flanders KC, Chesler L, Xie QW, Smith TW, Weidner J, Mumford R, Webber R, Nathan C, Roberts AB, Lippa CF, Sporn MB (1996) Inducible nitric oxide synthase in tangle-bearing neurons of patients with Alzheimer’s disease. J Exp Med 184(4):1425–1433PubMedCrossRefGoogle Scholar
  22. 22.
    Delgado-Esteban M, Almeida A, medina JM (2002) Tetrahydrobiopterin deficiency increases neuronal vulnerability to hypoxia. J Neurochem 82(5):1148–1159PubMedCrossRefGoogle Scholar
  23. 23.
    Heales SJ, Bolanos JP (2002) Impairment of brain mitochondrial function by reactive nitrogen species: the role of glutathione in dictating susceptibility. Neurochem Int 40(6):469–474PubMedCrossRefGoogle Scholar
  24. 24.
    Bolanos JP, Heales SJ, Land JM, Clark JB (1995) Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary culture. J Neurochem 64(5):1965–1972PubMedCrossRefGoogle Scholar
  25. 25.
    Park LC, Zhang H, Sheu KF, Calingasan NY, Kristal BS, Lindsay JG, Gibson GE (1999) Metabolic impairment induces oxidative stress, compromises inflammatory responses, and inactivates a key mitochondrial enzyme in microglia. J Neurochem 72(5):1948–1958PubMedCrossRefGoogle Scholar
  26. 26.
    Curtius HC, Niederwieser A, Levine R, Muldner H (1984) Therapeutic efficacy of tetrahydrobiopterin in Parkinson’s disease. Adv Neurol 40:463–466PubMedGoogle Scholar
  27. 27.
    Cai S, Alp NJ, McDonald D, Smith I, Kay J, Canevari L, Heales S, Channon KM (2002) GTP cyclohydrolase I gene transfer augments intracellular tetrahydrobiopterin in human endothelial cells: effects on nitric oxide synthase activity, protein levels and dimerisation. Cardiovasc Res 55(4):838–849PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Richard H. Foxton
    • 1
  • John M. Land
    • 1
    • 2
  • Simon J. R. Heales
    • 1
    • 2
    Email author
  1. 1.Department of Molecular NeuroscienceInstitute of NeurologyLondonUK
  2. 2.Neurometabolic UnitNational HospitalLondonUK

Personalised recommendations