Skip to main content
Log in

Pontine and Cerebellar Norepinephrine Content in Adult Rats Recovering from Focal Cortical Injury

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Norepinephrine (NE) plays an important role in motor recovery after brain damage. Most studies concerning NE activity have been performed in the cerebellum, while the role of the pons, the site where the norepinephrinergic locus coeruleus is located, has not yet been elucidated. For this work, we studied the changes in cerebellar and pontine NE content in sham-operated (n = 17), motor cortex injured (n = 6) and recovered rats (n = 12). Motor effects were assessed by means of footprint analysis and sensorimotor evaluation. It was found that after cortical brain damage, the stride length decreases while the stride angle increases after 6 h post-surgery, while the sensorimotor evaluation showed an increase in the motor deficit. Recovery was observed after 24 h. NE content increased in the pons after 6 h and returned to normal levels in recovered rats, with no significant changes observed in the cerebellum. Based on the functional remote inhibition, it is possible that NE exerts an autoinhibitory effect in the pons after motor cortical ablation. On the other hand, the absence of an effect in the cerebellum suggests that cerebellar NE activity related to damage and/or recovery is limited to discrete areas of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brailowsky S, Knight RT, Blood K (1986) gamma-Aminobutyric acid-induced potentiation of cortical hemiplegia. Brain Res 362:322–330

    Article  PubMed  CAS  Google Scholar 

  2. Hovda DA, Feeney DM (1984) Amphetamine with experience promotes recovery of locomotor function after unilateral frontal cortex injury in the cat. Brain Res 298:358–361

    Article  PubMed  CAS  Google Scholar 

  3. Katz DI, Alexander MP, Klein RB (1998) Recovery of arm function in patients with paresis after traumatic brain injury. Arch Phys Med Rehabil 79:5488–5493

    Article  Google Scholar 

  4. Goldstein LB (2000) Effects of amphetamines and small related molecules on recovery after stroke in animals and man. Neuropharmacology 39:852–859

    Article  PubMed  CAS  Google Scholar 

  5. Sutton RL, Hovda DA, Chen MJ, Feeney DM (2000) Alleviation of brain injury-induced cerebral metabolic depression by amphetamine: a cytochrome oxidase histochemistry study. Neural Plast 7:109–125

    PubMed  CAS  Google Scholar 

  6. Boyeson MG, Feeney DM (1990) Intraventricular norepinephrine facilitates motor recovery following sensorimotor cortex injury. Pharmacol Biochem Behav 35:3497–3501

    Article  Google Scholar 

  7. Kikuchi K, Nishino K, Ohyu H (2000) Increasing CNS norepinephrine levels by the precursor L-DOPS facilitates beam-walking recovery after sensorimotor cortex ablation in rats. Brain Res 860:130–135

    Article  PubMed  CAS  Google Scholar 

  8. Boyeson MG, Krobert KA, Grade CM, Scherer PJ (1992) Unilateral, but not bilateral, locus coeruleus lesions facilitate recovery from sensorimotor cortex injury. Pharmachol Biochem Behav 43:771–777

    Article  CAS  Google Scholar 

  9. Gonzalez-Pina R, Bueno-Nava A, Escalante-Membrillo C, Montes S, Gonzalez-Maciel A, Ayala-Guerrero F (2003) Cerebellar and pontine norepinephrine contents after motor recovery in rats. Res Neurol Neurosc 21:219–220

    Google Scholar 

  10. Krobert KA, Sutton RL, Feeney DM (1994) Spontaneous and amphetamine-evoked release of cerebellar noradrenaline after sensorimotor cortex contusion: an in vivo microdialysis study in the awake rat. J Neurochem 62:2233–2240

    Article  PubMed  CAS  Google Scholar 

  11. Berridge CW, Waterhouse BD (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev 42:33–84

    Article  PubMed  Google Scholar 

  12. Aston-Jones G, Rajkowski J, Cohen J (2000) Locus coeruleus and regulation of behavioral flexibility and attention. Prog Brain Res 126:165–182

    Article  PubMed  CAS  Google Scholar 

  13. Gladstone DJ, Black SE (2000) Enhancing recovery after stroke with noradrenergic pharmacotherapy: a new frontier? Can J Neurol Sci 27:97–105

    PubMed  CAS  Google Scholar 

  14. Boyesson MG, Scherer PJ, Grade CM, Krobert KA (1993) Unilateral locus coeruleus lesions facilitate motor recovery from cortical injury through supersensitivity mechanisms. Pharmacol Biochem Behav 44(2):297–305

    Article  Google Scholar 

  15. Goldstein LB, Bullman S (1997) Effects of dorsal noradrenergic bundle lesion on recovery after sensorimotor cortex injury. Pharmacol Biochem Behav 58:1151–1157

    Article  PubMed  CAS  Google Scholar 

  16. Sutton RL, Feeney DM (1992) α-noradrenergic agonist and antagonist affect recovery and maintenance of beam-walking ability after sensorimotor cortex ablation in the rat. Restor Neurol Neurosci 4:1–11

    CAS  Google Scholar 

  17. Dunn-Meynell AA, Yarlagadda Y, Levin E (1997) Alpha 1-adrenoceptor blockade increases behavioral deficits in traumatic brain injury. J Neurotrauma 14:43–52

    Article  PubMed  CAS  Google Scholar 

  18. Waterhouse BD, Lin CS, Burne RA, Woodward DJ (1983) The distribution of neocortical projection neurons in the locus coeruleus. Comp Neurol 217:418–431

    Article  CAS  Google Scholar 

  19. Steindler DA (1981) Locus coeruleus neurons have axons that branch to the forebrain and cerebellum. Brain Res 223:367–373

    Article  PubMed  CAS  Google Scholar 

  20. Gonzalez-Pina R, Bueno-Nava A, Montes S, Alfaro-Rodríguez A, Gonzalez-Maciel A, Reynoso-Robles R, Ayala-Guerrero F (2005) Pontine norepinephrine content after motor cortical ablation in rats. Proc West Pharmacol Soc 48:73–76

    PubMed  CAS  Google Scholar 

  21. Olfert ED, Cross BM, McWilliam AA (1993) Guide for the care and use of experimental animals. Can Council Animal Care 1:211

    Google Scholar 

  22. Festing MFW (1994) Reduction of animal use: experimental design and quality of experiments. Lab Anim Sci 28:212–221

    CAS  Google Scholar 

  23. Hall RD, Lindholm EP (1974) Organization of motor and somatosensory neocortex in the albino rat. Brain Res 66:23–38

    Article  Google Scholar 

  24. Gonzalez-Pina R, Escalante-Membrillo C (2000) Algunas consideraciones bioéticas en los estudios de sueño simultaneos al muestreo neuroquimico en animales con libertad de movimientos. Animales de experimentación 6:26–32

    Google Scholar 

  25. García JH, Wagner S, Liu KF, Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26:627–35

    PubMed  Google Scholar 

  26. Pantoni L, Bartolini L, Pracucci G, Inzitari D (1998) Interrater agreement on a simple neurological score in rats. Stroke 29:871–872

    PubMed  CAS  Google Scholar 

  27. Paxinos G, Watson C (1982) The rat brain in stereotaxi coordinates. Academic Press, Australia

    Google Scholar 

  28. Serteser M, Ösben T, Gümüslü S, Balkan S, Balkan E (2001) Biochemical evidence of crossed cerebellar diaschisis in terms of nitric oxide indicators and lipid peroxidation products in rats during focal cerebral ischemia. Acta Neurol Scand 103:43–48

    Article  PubMed  CAS  Google Scholar 

  29. Washburn M, Moises HC (1989) Electrophysiological correlates of presynaptic alpha 2-receptor-mediated inhibition of norepinephrine release at locus coeruleus synapses in dentate gyrus. J Neuroscice 9:2131–2140

    CAS  Google Scholar 

  30. Nasseri A, Minneman KP (1987) Relationship between alpha 2-adrenergic receptor binding sites and the functional receptors inhibiting norepinephrine release in rat cerebral cortex. Mol Pharmacol 32:655–662

    PubMed  CAS  Google Scholar 

  31. Smeets WJ, Gonzalez A (2000) Catecholamine systems in the brain of vertebrates:new perspectives through a comparative approach. Brain Res Brain Res Rev 33:308–379

    Article  PubMed  CAS  Google Scholar 

  32. Bucheller MM, Hadamek KK, Hein L (2002) Two alpha(2)-adrenergic receptor subtypes, alpha(2A) and alpha(2C), inhibit transmitter release in the brain of gene-targeted mice. Neuroscience 109:819–826

    Article  Google Scholar 

  33. Hobson JA, McCarley RW (1977) The brain as a dream state generator: an activation-synthesis hypothesis of the dream process. Am J Psychiatry 134:1335–1348

    PubMed  CAS  Google Scholar 

  34. Room P, Postema F, Korf J (1981) Divergent axon collaterals of rat locus coeruleus neurons: demonstration by a fluorescent double labeling technique. Brain Res 221:219–230

    Article  PubMed  CAS  Google Scholar 

  35. Boyeson MG, Krobert KA (1992) Cerebellar norepinephrine infusions facilitate recovery after sensorimotor cortex injury. Brain Res Bull 29:435–439

    Article  PubMed  CAS  Google Scholar 

  36. Krobert KA, Sutton RL, Feeney DM (1994) Spontaneous and amphetamine-evoked release of cerebellar noradrenaline after sensorimotor cortex contusion: an in vivo microdialysis study in the awake rat. J Neurochem 62:2233–2240

    Article  PubMed  CAS  Google Scholar 

  37. Schambra UB, Mackensen GB, Stafford-Smith M, Haines DE, Schwinn DA (2005) Neuron especific alfa-adrenergic receptor expression in human cerebellum: implication for emerging cerebellar roles in neurologic disease. Neuroscience 135:507–523

    Article  PubMed  CAS  Google Scholar 

  38. Schweighofer N, Doya K, Kuroda S (2004) Cerebelar aminergic neuromodulation: towards a functional understanding. Brain Res Brain Res Rev 44:103–116

    Article  PubMed  Google Scholar 

  39. Feeney DM, Baron JC (1986) Diaschisis. Stroke 17:817–830

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Camilo Ríos for his support in the neurochemical analysis, and Jesús Espinoza-Villanueva, who helped us in the histological preparation of tissues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rigoberto Gonzalez-Pina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez-Pina, R., Bueno-Nava, A., Montes, S. et al. Pontine and Cerebellar Norepinephrine Content in Adult Rats Recovering from Focal Cortical Injury. Neurochem Res 31, 1443–1449 (2006). https://doi.org/10.1007/s11064-006-9196-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9196-6

Keywords

Navigation