Skip to main content
Log in

Cyclic GMP-Dependent Pathways Protect Differentiated Oligodendrocytes from Multiple Types of Injury

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The cyclic GMP analog 8-bromo-cyclic GMP (8-Br-cGMP) protects differentiated murine oligodendrocytes (OLs) from caspase-mediated death initiated by staurosporine, thapsigargin or kainate. Caspase-independent death caused by high levels of NO is also partially prevented by 8-Br-cGMP. Inhibitors of protein kinase G (cGMP-dependent protein kinase, cGK) reversed protection, supporting involvement of cGK. Since NO stimulates soluble guanylate cyclase, increasing cGMP, we treated OLs with low levels of NO and observed partial protection against thapsigargin, staurosporine and kainate. Two inhibitors of mitochondrial pore transition (MPT), cyclosporin A and bongkrekic acid, were poorly protective, indicating that cGMP is not acting primarily by blocking MPT. 8Br-cGMP was more effective than 8Br-cAMP in protecting against staurosporine or release of intracellular Ca++ by thapsigargin. The cAMP analog exhibited little or no protection against kainate or high levels of NO. Thus cGK signaling is more effective than protein kinase A or phosphodiesterase 3 signaling in preventing OL death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yoshioka A, Yamaya Y, Saiki S, Kanemoto M, Hirose G, Pleasure D (2000) Cyclic GMP/cyclic GMP-dependent protein kinase system prevents excitotoxicity in an immortalized oligodendroglial cell line. J Neurochem 74:633–640

    Article  PubMed  CAS  Google Scholar 

  2. Takuma K, Phuagphong P, Lee E, Mori K, Baba A, Matsuda T (2001) Anti-apoptotic effect of cGMP in cultured astrocytes: inhibition by cGMP-dependent protein kinase of mitochondrial permeable transition pore. J Biol Chem 76:48093–48099

    Google Scholar 

  3. Fiscus RR (2002) Involvement of cyclic GMP and protein kinase G in the regulation of apoptosis and survival in neural cells. Neurosignals 11:175–190 Review

    Article  PubMed  CAS  Google Scholar 

  4. Benjamins JA, Nedelkoska L, George (2003) Protection of mature oligodendrocytes by inhibitors of caspases and calpains. Neurochem Res 28:143–152

    Article  PubMed  CAS  Google Scholar 

  5. Boullerne AI, Nedelkoska L, Benjamins JA (2001) Role of calcium in nitric oxide- induced cytotoxicity in oligodendrocytes: EGTA protects mouse oligodendrocytes. J Neurosci Res 63:124–135

    Article  PubMed  CAS  Google Scholar 

  6. Dyer CA, Benjamins JA (1990) Glycolipids and transmembrane signaling: antibodies to galactocerebroside cause an influx of calcium in oligodendrocytes. J Cell Biol 111:625–633

    Article  PubMed  CAS  Google Scholar 

  7. Benjamins JA, Nedelkoska L (1996) Release of intracellular calcium stores leads to retraction of membrane sheets and cell death in mature mouse oligodendrocytes. Neurochem Res 21:471–479

    Article  PubMed  CAS  Google Scholar 

  8. McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85:890–902

    Article  PubMed  CAS  Google Scholar 

  9. Bottenstein JE (1986) Growth requirements in vitro of oligodendrocyte cell lines and neonatal rat brain oligodendrocytes. Proc Natl Acad Sci USA 83:1955–1959

    Article  PubMed  CAS  Google Scholar 

  10. Benjamins JA, Nedelkoska L (1994) Maintenance of membrane sheets by cultured oligodendrocytes requires continuous microtubule turnover and Golgi transport. Neurochem Res 19:631–639

    Article  PubMed  CAS  Google Scholar 

  11. Brand-Schieber E, Werner P (2003) (±)Alpha-amino-3-hydroxy-5-methylisoxazole-4- propionic acid and kainate receptor subunit expression in mouse versus rat spinal cord white matter: similarities in astrocytes but differences in oligodendrocytes. Neurosci Lett 345:126–130

    Article  PubMed  CAS  Google Scholar 

  12. Rosenberg PA, Li Y, Ali S, Altiok N, Back SA, Volpe JJ (1999) Intracellular redox state determines whether nitric oxide is toxic or protective to rat oligodendrocytes in culture. J Neurochem 73:476–484

    Article  PubMed  CAS  Google Scholar 

  13. Boullerne AI, Benjamins JA (2006) Nitric oxide synthase expression and nitric oxide toxicity in oligodendrocytes. Antioxidants and Redox Signaling 8:967–980

    Article  PubMed  CAS  Google Scholar 

  14. Wang X, Robinson PJ (1997) Cyclic GMP-dependent protein kinase and cellular signaling in the nervous system. J Neurochem 68:443–456 Review

    Article  PubMed  CAS  Google Scholar 

  15. Okada D (1992) Two pathways of cyclic GMP production through glutamate receptor-mediated nitric oxide synthesis. J Neurochem 59:1203–1210

    Article  PubMed  CAS  Google Scholar 

  16. Fedele E, Raiteri M (1999) In vivo studies of the cerebral glutamate receptor/NO/cGMP pathway. Prog Neurobiol 58:89–120 Review

    Article  PubMed  CAS  Google Scholar 

  17. Kim YM, Chung HT, Kim SS, Han JA, Yoo YM, Kim KM, Lee GH, Yun HY, Green A, Li J, Simmons RL, Billiar TR (1999) Nitric oxide protects PC12 cells from serum deprivation-induced apoptosis by cGMP-dependent inhibition of caspase signaling. J Neurosci 19:6740–6747

    PubMed  CAS  Google Scholar 

  18. Ha KS, Kim YM, Kwon YG, Bai SK, Nam WD, Yoo YM, Kim PK, Chung HT, Billiar TR, Kim YM (2003) Nitric oxide prevents 6-hydroxydopamine-induced apoptosis in PC12 cells through cGMP-dependent PI3 kinase/Akt activation. Nitric oxide prevents 6-hydroxydopamine-induced apoptosis in PC12 cells through cGMP-dependent PI3-kinase/Akt activation. FASEB J 17:1036–1047

    Article  PubMed  CAS  Google Scholar 

  19. Yoshida Y, Sun HT, Cai JQ, Imai S (1991) Cyclic GMP-dependent protein kinase stimulates the plasma membrane Ca2+ pump ATPase of vascular smooth muscle via phosphorylation of a 240-kDa protein. J Biol Chem 266:19819–19825

    PubMed  CAS  Google Scholar 

  20. Baltrons MA, Garcia A (2001) The nitric oxide/cyclic GMP system in astroglial cells. Prog Brain Res 132:325–337 Review

    Article  PubMed  CAS  Google Scholar 

  21. Schubert P, Morino T, Miyazaki H, Ogata T, Nakamura Y, Marchini C, Ferroni S (2000) Cascading glia reactions: a common pathomechanism and its differentiated control by cyclic nucleotide signaling. Ann NY Acad Sci 903:24–33

    Article  PubMed  CAS  Google Scholar 

  22. Hofmann F (2005) The biology of cyclic GMP-dependent protein kinases. J Biol Chem 280:1–4 Review

    PubMed  CAS  Google Scholar 

  23. Feil R, Hofmann F, Kleppisch T (2005) Function of cGMP-dependent protein kinases in the nervous system. Rev Neurosci 16:23–41 Review

    PubMed  CAS  Google Scholar 

  24. Gamm DM, Francis SH, Angelotti TP, Corbin JD, Uhler MD (1995) The type II isoform of cGMP-dependent protein kinase is dimeric and possesses regulatory and catalytic properties distinct from the type I isoforms. J Biol Chem 270:27380–27388

    Article  PubMed  CAS  Google Scholar 

  25. Bertrand R, Solary E, O’Connor P, Kohn KW, Pommier Y (1994) Induction of a common pathway of apoptosis by staurosporine. Exp Cell Res 211:314–321

    Article  PubMed  CAS  Google Scholar 

  26. Tamaoki T, Nomoto H, Takahashi I, Kato Y, Morimoto M, Tomita F (1986) Staurosporine, a potent inhibitor of phospholipid/Ca++dependent protein kinase. Biochem Biophys Res Commun 13:397–402

    Article  Google Scholar 

  27. Ruegg UT, Burgess GM (1989) Staurosporine, K-252 and UCN-01: potent but nonspecific inhibitors of protein kinases. Trends Pharmacol Sci 10:218–220 Review

    Article  PubMed  CAS  Google Scholar 

  28. Herbert JM, Seban E, Maffrand JP (1990) Characterization of specific binding sites for [3H]-staurosporine on various protein kinases. Biochem Biophys Res Commun 171:189–195

    Article  PubMed  CAS  Google Scholar 

  29. Oka A, Belliveau MJ, Rosenberg PA, Volpe JJ (1999) Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms, and prevention. J. Neurosci 13:1441–1453

    Google Scholar 

  30. Deng W, Rosenberg PA, Volpe JJ, Jensen FE (2003) Calcium-permeable AMPA/kainate receptors mediate toxicity and preconditioning by oxygen-glucose deprivation in oligodendrocyte precursors. Proc Natl Acad Sci USA 100:6801–6806

    Article  PubMed  CAS  Google Scholar 

  31. Rosenberg PA, Dai W, Gan XD, Ali S, Fu J, Back SA, Sanchez RM, Segal MM, Follett PL, Jensen FE, Volpe JJ (2003) Mature myelin basic protein-expressing oligodendrocytes are insensitive to kainate toxicity. J Neurosci Res 71:237–245

    Article  PubMed  CAS  Google Scholar 

  32. Yoshioka A, Hardy M, Younkin DP, Grinspan JB, Stern JL, Pleasure D (1995) Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors mediate excitotoxicity in the oligodendroglial lineage. J Neurochem 64:2442–2448

    Article  PubMed  CAS  Google Scholar 

  33. Rosin C, Bates TE, Skaper SD (2004) Excitatory amino acid induced oligodendrocyte cell death in vitro: receptor-dependent and -independent mechanisms. J Neurochem 90:1173–1185

    Article  PubMed  CAS  Google Scholar 

  34. Baud O, Li J, Zhang Y, Neve RL, Volpe JJ, Rosenberg PA (2004) Nitric oxide- induced cell death in developing oligodendrocytes is associated with mitochondrial dysfunction and apoptosis-inducing factor translocation. Eur J Neurosci 20:1713–1726

    Article  PubMed  Google Scholar 

  35. Tanaka J, Markerink-van Ittersum M, Steinbusch HW, De Vente J (1997) Nitric oxide- mediated cGMP synthesis in oligodendrocytes in the developing rat brain. Glia 19:286–297

    Article  PubMed  CAS  Google Scholar 

  36. Grabow M, Chakraborty G, Ledeen RW (1996) Characterization of guanylyl cyclase in purified myelin. Neurochem Res 21:457–462

    Article  PubMed  CAS  Google Scholar 

  37. Thippeswamy T, McKay JS, Morris R, Quinn J, Wong LF, Murphy D (2005) Glial- mediated neuroprotection: evidence for the protective role of the NO-cGMP pathway via neuron- glial communication in the peripheral nervous system. Glia 49:197–210

    Article  PubMed  Google Scholar 

  38. Buskila Y, Farkash S, Hershfinkel M, Amitai Y (2005) Rapid and reactive nitric oxide production by astrocytes in mouse neocortical slices. Glia 52:169–176

    Article  PubMed  Google Scholar 

  39. Smaili SS, Russell JT (1999) Permeability transition pore regulates both mitochondrial membrane pot ential and agonist-evoked Ca2+ signals in oligodendrocyte progenitors. Cell Calcium 26:121–130

    Article  PubMed  CAS  Google Scholar 

  40. Ebner S, Dunbar M, McKinnon RD (2000) Distinct roles for PI3K in proliferation and survival. J Neurochem Res 62:336–345

    Article  CAS  Google Scholar 

  41. Cui Q, So KF (2004) Involvement of cAMP in neuronal survival and axonal regeneration. Anat Sci Int 79:209–212 Review

    Article  PubMed  CAS  Google Scholar 

  42. Palacios N, Sanchez-Franco F, Fernandez M, Sanchez I, Cacicedo L (2005) Intracellular oligodendrocyte development: modulation by cyclic AMP. J Neurochem 95:1091–1107

    Article  PubMed  CAS  Google Scholar 

  43. Flores AI, Mallon BS, Matsui T, Ogawa W, Rosenzweig A, Okamoto T, Macklin WB (2000) Akt-mediated survival of oligodendrocytes induced by neuregulins. J Neurosci 20:7622–7630

    PubMed  CAS  Google Scholar 

  44. Cui QL, Fogle E, Almazan G (2006) Muscarinic acetylcholine receptors mediate oligodendrocyte progenitor survival through Src-like tyrosine kinases and PI3K/Akt pathways. Neurochem Int 48:383–393

    Article  PubMed  CAS  Google Scholar 

  45. Zaka M, Rafi MA, Rao HZ, Luzi P, Wenger DA (2005) Insulin-like growth factor-1 provides protection against psychosine-induced apoptosis in cultured mouse oligodendrocyte progenitor cells using primarily the PI3K/Akt pathway. Mol Cell Neurosci 30:398–407

    Article  PubMed  CAS  Google Scholar 

  46. Yoshioka A, Shimizu Y, Hirose G, Kitasato H, Pleasure D (1998) Cyclic AMP-elevating agents prevent oligodendroglial excitotoxicity. J Neurochem 70:2416–2423

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by NIH/NINDS Grant NS13143 and Grant RG 3595A7/2 from the National Multiple Sclerosis Society (JAB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joyce A. Benjamins.

Additional information

Special issue dedicated to Anthony Campagnoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benjamins, J.A., Nedelkoska, L. Cyclic GMP-Dependent Pathways Protect Differentiated Oligodendrocytes from Multiple Types of Injury. Neurochem Res 32, 321–329 (2007). https://doi.org/10.1007/s11064-006-9187-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9187-7

Keywords

Navigation