Skip to main content

Advertisement

Log in

The CNS Synapse Revisited: Gaps, Adhesive Welds, and Borders

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Although processes leading up to the point of synapse formation are fairly well understood, the precise sequence of events in which the membranes of two separate cells “lock in” to form a mature synaptic junctional complex is poorly understood. A careful study of the molecules operating at the synapse indicates that their roles are more multifarious than once imagined. In this review we posit that the synapse is a functional organelle with poorly defined boundaries and a complex biochemistry. The role of adhesion molecules, including the integration of their signaling and adhesive properties in the context of synaptic activity is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett MR (1996) Neuromuscular transmission at an active zone: the secretosome hypothesis. J Neurocytol 25:869–891

    Article  PubMed  CAS  Google Scholar 

  2. Golgi C (1886) Sulla fina anatomia degli organi centrali del sistma nervosa. Hoepli, Milano

    Google Scholar 

  3. Golgi C (1886) Sur l’anatomie microscopique des organs centraux du systeme nerveux. Arch Ital Biol 7:15–47

    Google Scholar 

  4. Cajal SR (1959) Degeneration and regeneration of the nervous system (R.M. May trans.). Hafner, New York (original work published 1928)

  5. Cajal SR (1995) Histology of the nervous system of man and vertebrates (1909–1911), vols. 1 and 2 (L. Azoulay, Spanish trans.; N. Swanson and L.W. Swanson, French trans.). Oxford University Press, NY

    Google Scholar 

  6. Fannon AM, Colman DR (1996) A model for central synaptic junctional complex formation based on the differential adhesive specificities of the cadherins. Neuron 17:423–434

    Article  PubMed  CAS  Google Scholar 

  7. Di Cristo G, Wu C, Chattopadhyaya B et al (2004). Subcellular domain-restricted GABAergic innervation in primary visual cortex in the absence of sensory and thalamic inputs. Nat Neurosci 7:1184–1186

    Article  PubMed  CAS  Google Scholar 

  8. Dityatev A, Dityateva G, Schachner M (2000) Synaptic strength as a function of post- versus presynaptic expression of the neural cell adhesion molecule NCAM. Neuron 26:207–217

    Article  PubMed  CAS  Google Scholar 

  9. Scheiffele P, Fan J, Choih J et al (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101:657–669

    Article  PubMed  CAS  Google Scholar 

  10. Bouley M, Tian MZ, Paisley K, Shen YC, Malhotra JD, Hortsch M (2000) The L1-type cell adhesion molecule neuroglian influences the stability of neural ankyrin in the Drosophila embryo but not its axonal localization. J Neurosci 20:4515–4523

    PubMed  CAS  Google Scholar 

  11. Godenschwege TA, Kristiansen LV et al (2006) A conserved role for Drosophila Neuroglian and human L1-CAM in central-synapse formation. Curr Biol 16(1):12–23

    Article  PubMed  CAS  Google Scholar 

  12. Luthi A, Mohajeri H et al (1996) Reduction of hippocampal long-term potentiation in transgenic mice ectopically expressing the neural cell adhesion molecule L1 in astrocytes. J Neurosci Res 46(1):1–6

    Article  PubMed  CAS  Google Scholar 

  13. Jenkins SM, Kizhatil K et al (2001) FIGQY phosphorylation defines discrete populations of L1 cell adhesion molecules at sites of cell–cell contact and in migrating neurons. J Cell Sci 114(Pt 21):3823–3835

    PubMed  CAS  Google Scholar 

  14. Kiss JZ, Muller D (2001) Contribution of the neural cell adhesion molecule to neuronal and synaptic plasticity. Rev Neurosci 12(4):297–310

    PubMed  CAS  Google Scholar 

  15. Jenkins SM, Kizhatil K et al (2001) FIGQY phosphorylation defines discrete populations of L1 cell adhesion molecules at sites of cell–cell contact and in migrating neurons. J Cell Sci 114(Pt 21):3823–3835

    PubMed  CAS  Google Scholar 

  16. Mayford M, Barzilai A, Keller F et al (1992) Modulation of an NCAM-related adhesion molecule with long-term synaptic plasticity in Aplysia. Science 256:638–644

    Article  PubMed  CAS  Google Scholar 

  17. Skibo GG, Davies HA et al (1998) Increased immunogold labelling of neural cell adhesion molecule isoforms in synaptic active zones of the chick striatum 5–6 hours after one-trial passive avoidance training. Neuroscience 82(1):1–5

    Article  PubMed  CAS  Google Scholar 

  18. Cremer H, Chazal G, Carleton A et al (1998) Long-term but not short-term plasticity at mossy fiber synapses is impaired in neural cell adhesion molecule-deficient mice. Proc Natl Acad Sci USA 95:13242–13247

    Article  PubMed  CAS  Google Scholar 

  19. Dityatev A, Dityateva G, Schachner M (2000) Synaptic strength as a function of post- versus presynaptic expression of the neural cell adhesion molecule NCAM. Neuron 26:207–217

    Article  PubMed  CAS  Google Scholar 

  20. Paratcha G, Ledda F, Ibanez CF (2003) The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell 113:867–879

    Article  PubMed  CAS  Google Scholar 

  21. Bouzioukh F, Tell F, Rougan G et al (2001) NMDA receptor and nitric oxide synthase activation regulate polysialylated neural cell adhesion molecule expression in adult brainstem synapses. J Neurosci 21(13):4721–4730

    PubMed  CAS  Google Scholar 

  22. Biederer T, Sara Y, Mozhayeva M et al (2002) SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297:1525–1531

    Article  PubMed  CAS  Google Scholar 

  23. Missler M (2003) Synaptic cell adhesion goes functional. Trends Neurosci 26:176–178

    Article  PubMed  CAS  Google Scholar 

  24. Sara Y, Biederer T, Atasoy D, Chubykin A, Mozhayeva MG, Sudhof TC, Kavalali ET (2005) Selective capability of SynCAM and neuroligin for functional synapse assembly. J Neurosci 25:260–270

    Article  PubMed  CAS  Google Scholar 

  25. Murase S, Schuman EM (1999) The role of cell adhesion molecules in synaptic plasticity and memory. Curr Opin Cell Biol 11:549–553

    Article  PubMed  CAS  Google Scholar 

  26. Chavis P, Westbrook G (2001) Integrins mediate functional pre- and postsynaptic maturation at a hippocampal synapse. Nature 411:317–321

    Article  PubMed  CAS  Google Scholar 

  27. Hama H, Hara C, Yamaguchi K et al (2004) PKC signaling mediates global enhancement of excitatory synaptogenesis in neurons triggered by local contact with astrocytes. Neuron 41:405–415

    Article  PubMed  CAS  Google Scholar 

  28. Shi Y, Ethell IM (2006) Integrins control dendritic spine plasticity in hippocampal neurons through NMDA receptor and Ca2+/calmodulin-dependent protein kinase II-mediated actin reorganization. J Neurosci 26:1813–1822

    Article  PubMed  CAS  Google Scholar 

  29. Tabuchi K, Sudhof TC (2002) Structure and evolution of neurexin genes: insight into the mechanism of alternative splicing. Genomics 79:849–859

    Article  PubMed  CAS  Google Scholar 

  30. Zhang W, Rohlmann A, Sargsyan V et al (2005) Extracellular domains of alpha-neurexins participate in regulating synaptic transmission by selectively affecting N- and P/Q-type Ca2+ channels. J Neurosci 25:4330–4342

    Article  PubMed  CAS  Google Scholar 

  31. Nam CI, Chen L (2005) Postsynaptic assembly induced by neurexin–neuroligin interaction and neurotransmitter. Proc Natl Acad Sci USA 102:6137–6142

    Article  PubMed  CAS  Google Scholar 

  32. Chih B, Engelman H, Scheiffele P (2005) Control of excitatory and inhibitory synapse formation by neuroligins. Science 307:1324–1328

    Article  PubMed  CAS  Google Scholar 

  33. Graf ER, Kang Y, Hauner AM et al (2006) Structure function and splice site analysis of the synaptogenic activity of the neurexin-1 beta LNS domain. J Neurosci 26:4256–4265

    Article  PubMed  CAS  Google Scholar 

  34. Yuan LL, Ganetzky B (1999) A glial-neuronal signaling pathway revealed by mutations in a neurexin-related protein. Science 283:1343–1345

    Article  PubMed  CAS  Google Scholar 

  35. Graf ER, Zhang X, Jin SX et al (2004) Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119:1013–1026

    Article  PubMed  CAS  Google Scholar 

  36. Biederer T (2005) Progress from the postsynaptic side: signaling in synaptic differentiation. Sci STKE 274:9

    Google Scholar 

  37. Togashi H, Abe K, Mizoguchi A et al (2002) Cadherin regulates dendritic spine morphogenesis. Neuron 35(1):1–3

    Article  Google Scholar 

  38. Bozdagi O, Shan W, Tanaka H et al (2000) Increasing numbers of synaptic puncta during late-phase LTP: N-cadherin is synthesized, recruited to synaptic sites, and required for potentiation. Neuron 28:245–259

    Article  PubMed  CAS  Google Scholar 

  39. Polinsky M, Balazovich K, Tosney KW (2000) Identification of an invariant response: stable contact with Schwann cells induces veil extension in sensory growth cones. J Neurosci 20:1044–1055

    PubMed  CAS  Google Scholar 

  40. Nakagawa S, Takeichi M (1995) Neural crest cell–cell adhesion controlled by sequential and subpopulation-specific expression of novel cadherins. Development 121:1321–1332

    PubMed  CAS  Google Scholar 

  41. Jungling K, Eulenburg V, Moore R, Kemler R, Lessmann V, Gottmann K (2006) N-cadherin transsynaptically regulates short-term plasticity at glutamatergic synapses in embryonic stem cell-derived neurons. J Neurosci 26:6968–6978

    Article  PubMed  Google Scholar 

  42. Nedivi E, Wu GY, Cline HT (1998) Promotion of dendritic growth by CPG15, an activity-induced signaling molecule. Science 281:1863–1866

    Article  PubMed  CAS  Google Scholar 

  43. Javaherian A, Cline HT (2005) Coordinated motor neuron axon growth and neuromuscular synaptogenesis are promoted by CPG15 in vivo. Neuron 45(4):505–512

    Article  PubMed  CAS  Google Scholar 

  44. Udin S (2000) CPG15 and the dynamics of retinotectal synapses. Nat Neurosci 3(10):971–972

    Article  PubMed  CAS  Google Scholar 

  45. Cantallops I, Haas K, Cline HT (2000) Postsynaptic CPG15 promotes synaptic maturation and presynaptic axon arbor elaboration in vivo. Nat Neurosci 3:1004–1011

    Article  PubMed  CAS  Google Scholar 

  46. Drescher U (2002) Eph family functions from an evolutionary perspective. Curr Opin Genet Dev 12(4):397–402

    Article  PubMed  CAS  Google Scholar 

  47. Armstrong JN, Saganich MJ et al (2006) B-ephrin reverse signaling is required for NMDA-independent long-term potentiation of mossy fibers in the hippocampus. J Neurosci 26(13):3474–3481

    Article  PubMed  CAS  Google Scholar 

  48. Grunwald IC, Korte M et al (2004) Hippocampal plasticity requires postsynaptic ephrinBs. Nat Neurosci 7(1):33–40

    Article  PubMed  CAS  Google Scholar 

  49. Takasu MA, Dalva MB et al (2002) Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science 295(5554):491–495

    Article  PubMed  CAS  Google Scholar 

  50. Murai KK, Nguyen LN et al (2003) Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat Neurosci 6(2):153–160

    Article  PubMed  CAS  Google Scholar 

  51. Tanaka H, Shan W, Phillips GR et al (2000) Molecular modification of N-cadherin in response to synaptic activity. Neuron 25:93–107

    Article  PubMed  CAS  Google Scholar 

  52. Garner CC, Kindler S, Gundelfinger ED (2000) Molecular determinants of presynaptic active zones. Curr Opin Neurobiol 10:321–327

    Article  PubMed  CAS  Google Scholar 

  53. Garner CC, Nash J, Huganir RL (2000) PDZ domains in synapse assembly and signalling. Trends Cell Biol 10:274–280

    Article  PubMed  CAS  Google Scholar 

  54. Valtschanoff JG, Weinberg RJ (2001) Laminar organization of the NMDA receptor complex within the postsynaptic density. J Neurosci 21:1211–1217

    PubMed  CAS  Google Scholar 

  55. Kim JH, Huganir RL (1999) Organization and regulation of proteins at synapses. Curr Opin Cell Biol 11:248–254

    Article  PubMed  CAS  Google Scholar 

  56. Yin X, Watanabe M, Rutishauser U (1995) Effect of polysialic acid on the behavior of retinal ganglion cell axons during growth into the optic tract and tectum. Development 121:3439–3446

    PubMed  CAS  Google Scholar 

  57. Brummendorf T, Rathjen FG (1996) Structure/function relationships of axon-associated adhesion receptors of the immunoglobulin superfamily. Curr Opin Neurobiol 6:584–593

    Article  PubMed  CAS  Google Scholar 

  58. Davis JQ, Bennett V (1994) Ankyrin binding activity shared by the neurofascin/L1/NrCAM family of nervous system cell adhesion molecules. J Biol Chem 269:27163–27166

    PubMed  CAS  Google Scholar 

  59. Hortsch M (1996) The L1 family of neural cell adhesion molecules: old proteins performing new tricks. Neuron 17:587–593

    Article  PubMed  CAS  Google Scholar 

  60. Inuzuka H, Miyatani S, Takeichi M (1991) R-cadherin: a novel Ca(2+)-dependent cell–cell adhesion molecule expressed in the retina. Neuron 7:69–79

    Article  PubMed  CAS  Google Scholar 

  61. Yap AS, Niessen CM, Gumbiner BM (1998) The juxtamembrane region of the cadherin cytoplasmic tail supports lateral clustering, adhesive strengthening, and interaction with p120ctn. J Cell Biol 141:779–789

    Article  PubMed  CAS  Google Scholar 

  62. Tamura K, Shan WS, Hendrickson et al (1998) Structure–function analysis of cell adhesion by neural (N-) cadherin. Neuron 20:1153–1163

    Article  PubMed  CAS  Google Scholar 

  63. Karecla PI, Bowden SJ, Green SJ et al (1995) Recognition of E-cadherin on epithelial cells by the mucosal T cell integrin alpha M290 beta 7 (alpha E beta 7). Eur J Immunol 25:852–856

    PubMed  CAS  Google Scholar 

  64. Bolliger MF, Frei K, Winterhalter KH et al (2001) Identification of a novel neuroligin in humans which binds to PSD-95 and has a widespread expression. Biochem J 356:581–588

    Article  PubMed  CAS  Google Scholar 

  65. Ichtchenko K, Hata Y, Nguyen T et al (1995) Neuroligin 1: a splice site-specific ligand for beta-neurexins. Cell 81:435–443

    Article  PubMed  CAS  Google Scholar 

  66. Hata Y, Davletov B, Petrenko AG et al (1993) Interaction of synaptotagmin with the cytoplasmic domains of neurexins. Neuron 10:307–315

    Article  PubMed  CAS  Google Scholar 

  67. Fujion et al 2003 (cpg 15)

  68. Nedivi E, Hevroni D, Naot D et al (1993) Numerous candidate plasticity-related genes revealed by differential cDNA cloning. Nature 363:718–722

    Article  PubMed  CAS  Google Scholar 

  69. Nedivi E, Fieldust S, Theill LE et al (1996) A set of genes expressed in response to light in the adult cerebral cortex and regulated during development. Proc Natl Acad Sci USA 93:2048–2053

    Article  PubMed  CAS  Google Scholar 

  70. Corriveau RA, Shatz CJ, Nedivi E (1999) Dynamic regulation of cpg15 during activity-dependent synaptic development in the mammalian visual system. J Neurosci 19:7999–8008

    PubMed  CAS  Google Scholar 

  71. Lee WC, Nedivi E (2002) Extended plasticity of visual cortex in dark-reared animals may result from prolonged expression of cpg15-like genes. J Neurosci 22:1807–1815

    PubMed  CAS  Google Scholar 

  72. Mellitzer G, Xu Q, Wilkinson DG (1999) Eph receptors and ephrins restrict cell intermingling and communication. Nature 400:77–81

    Article  PubMed  CAS  Google Scholar 

  73. Bruckner K, Pasquale EB, Klein R (1997) Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science 275:1640–1643

    Article  PubMed  CAS  Google Scholar 

  74. Cowan CA, Henkemeyer M (2002) Ephrins in reverse, park and drive. Trends Cell Biol 12:339–346

    Article  PubMed  CAS  Google Scholar 

  75. Persohn E, Schachner M (1990) Immunohistological localization of the neural adhesion molecules L1 and N-CAM in the developing hippocampus of the mouse. J Neurocytol 19:807–819

    Article  PubMed  CAS  Google Scholar 

  76. Arami S, Jucker M, Schachner M et al (1996) The effect of continuous intraventricular infusion of L1 and NCAM antibodies on spatial learning in rats. Behav Brain Res 81:81–87

    Article  PubMed  CAS  Google Scholar 

  77. Fields RD, Itoh K (1996) Neural cell adhesion molecules in activity-dependent development and synaptic plasticity. Trends Neurosci 19:473–480

    Article  PubMed  CAS  Google Scholar 

  78. Bahr M (1997). Target-specific guidance cues for regenerating axons are reexpressed in the lesioned adult mammalian central nervous system. Adv Neurol 73:83–90

    PubMed  CAS  Google Scholar 

  79. Schnadelbach O, Ozen I, Blaschuk OW et al (2001) N-cadherin is involved in axon-oligodendrocyte contact and myelination. Mol Cell Neurosci 17:1084–1093

    Article  PubMed  CAS  Google Scholar 

  80. Garrod DR (1993) Desmosomes and hemidesmosomes. Curr Opin Cell Biol 5:30–40

    Article  PubMed  CAS  Google Scholar 

  81. Duden R, Franke WW (1988) Organization of desmosomal plaque proteins in cells growing at low calcium concentrations. J Cell Biol 107:1049–1063

    Article  PubMed  CAS  Google Scholar 

  82. Kennedy MB, Bennett MK, Erondu NE (1983) Biochemical and immunochemical evidence that the “major postsynaptic density protein” is a subunit of a calmodulin-dependent protein kinase. Proc Natl Acad Sci USA 80:7357–7361

    Article  PubMed  CAS  Google Scholar 

  83. Rutishauser U, Landmesser L (1996) Polysialic acid in the vertebrate nervous system: a promoter of plasticity in cell–cell interactions. Trends Neurosci 19:422–427

    PubMed  CAS  Google Scholar 

  84. Seki T, Rutishauser U (1998) Removal of polysialic acid-neural cell adhesion molecule induces aberrant mossy fiber innervation and ectopic synaptogenesis in the hippocampus. J Neurosci 18:3757–3766

    PubMed  CAS  Google Scholar 

  85. Theodosis DT, Bonhomme R, Vitiello S (1999) Cell surface expression of polysialic acid on NCAM is a prerequisite for activity-dependent morphological neuronal and glial plasticity. J Neurosci 19:10228–10236

    PubMed  CAS  Google Scholar 

  86. Chazal G, Durbec P, Jankovski A et al (2000) Consequences of neural cell adhesion molecule deficiency on cell migration in the rostral migratory stream of the mouse. J Neurosci 20:1446–1457

    PubMed  CAS  Google Scholar 

  87. Cremer H, Lange R, Christoph A et al (1994) Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367:455–459

    Article  PubMed  CAS  Google Scholar 

  88. Shen H, Watanabe M, Tomasiewicz H et al (1997) Role of neural cell adhesion molecule and polysialic acid in mouse circadian clock function. J Neurosci 17:5221–5229

    PubMed  CAS  Google Scholar 

  89. Phillips GR, Huang JK, Wang Y et al (2001) The presynaptic particle web: ultrastructure, composition, dissolution, and reconstitution. Neuron 32:63–77

    Article  PubMed  CAS  Google Scholar 

  90. Dustin ML, Colman DR (2002) Neural and immunological synaptic relations. Science 298:785–789

    Article  PubMed  CAS  Google Scholar 

  91. Shan WS, Tanaka H, Phillips GR et al (2000) Functional cis-heterodimers of N- and R-cadherins. J Cell Biol 148:579–590

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazlie S. Latefi.

Additional information

Special issue dedicated to Anthony Campagnoni

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latefi, N.S., Colman, D.R. The CNS Synapse Revisited: Gaps, Adhesive Welds, and Borders. Neurochem Res 32, 303–310 (2007). https://doi.org/10.1007/s11064-006-9181-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9181-0

Keywords

Navigation