Skip to main content

Advertisement

Log in

Acetylcholinesterase Activity in Rats Experimentally Demyelinated with Ethidium Bromide and Treated with Interferon Beta

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The ethidium bromide (EB) demyelinating model was associated with interferon beta (IFN-β) to evaluate acetylcholinesterase (AChE) activity in the striatum (ST), hippocampus (HP), cerebral cortex (CC), cerebellum (CB), hypothalamus (HY), pons (PN) and synaptosomes from the CC. Rats were divided into four groups: I control (saline), II (IFN-β), III (EB) and IV (EB and IFN-β). After 7, 15 and 30 days rats (n = 6) were sacrificed, and the brain structures were removed for enzymatic assay. AChE activity was found to vary in all the brain structures in accordance with the day studied (7–15–30 days) (P < 0.05). In the group III, there was an inhibition of the AChE activity in the ST, CB, HY, HP and also in synaptosomes of the CC (P < 0.05). It was observed that IFN-β per se was capable to significantly inhibit (P < 0.05) AChE activity in the ST, HP, HY and synaptosomes of the CC. Our results suggest that one of the mechanisms of action of IFN-β is through the inhibition of AChE activity, and EB could be considered an inhibitor of AChE activity by interfering with cholinergic neurotransmission in the different brain regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Descarries L, Gisiger V, Steriade M (1997) Diffuse transmission by acetylcholine in the CNS. Prog Neurobiol 53:603–625

    Article  PubMed  CAS  Google Scholar 

  2. Mesulam MM, Guillozet A, Shaw P et al (2002) Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyse acetylcholine. Neuroscience 110:627–639

    Article  PubMed  CAS  Google Scholar 

  3. Moretto MB, Lermen CL, Morsch VM et al (2004) Effect of subchronic treatment with mercury chloride on NTPDase, 5′-nucleotidase and acetylcholinesterase from cerebral cortex of rats. Trace Elem Med Biol 17:255–260

    Article  CAS  Google Scholar 

  4. Grisaru D, Sternfeld M, Eldor A et al (1999) Structural roles of acetylcholinesterase variants in biology and pathology. Eur J Biochem 264:672–686

    Article  PubMed  CAS  Google Scholar 

  5. Das A, Dikshit M, Nath C (2001) Profile of acetylcholinesterase in brain areas of male and female rats of adult and old age. Life Sci 68:1545–55

    Article  PubMed  CAS  Google Scholar 

  6. Day T, Greenfield SA (2002) A non-cholinergic, trophic action of acetylcholinesterase on hippocampal neurons in vitro: molecular mechanisms. Neuroscience 111:649–656

    Article  PubMed  CAS  Google Scholar 

  7. Kaizer RR, Silva AC, Morsch VM et al (2004) Diet-induced changes in AChE activity after long-term exposure. Neurochem Res 29:2251–2255

    Article  PubMed  CAS  Google Scholar 

  8. Obregon AD, Schetinger MRC, Corrêa MC et al (2005) Effects per se of organic solvents in the cerebral acetylcholinesterase of rats. Neurochem Res 30:379–384

    Article  PubMed  CAS  Google Scholar 

  9. Tõugu V, Kesvatera T (1996) Role of ionic interactions in cholinesterase catalysis. Biochim Biophys Acta 1298:12–30

    PubMed  Google Scholar 

  10. Johonson G, Moore SW (1999) The adhesion function on acetylcholinesterase is located at peripheral anionic site. Biochem Bioph Res Co 258:758–762

    Article  Google Scholar 

  11. Layer PG, Weikert T, Alber R (1993) Cholinesterase regulate neurite growth of chick nerve in vitro by means of a non-enzimatic mechanism. Cell Tissue Res 273:219–226

    Article  PubMed  CAS  Google Scholar 

  12. Soreq H, Seidman S (2001) Acetylcholinesterase-new roles for an old actor. Nat Rev Neurosci 2:294–302

    Article  PubMed  CAS  Google Scholar 

  13. Kawashima K, Fujii T (2001) Extraneural cholinergic system in lymphocytes. Pharmacol Therapeut 86:29–48

    Article  Google Scholar 

  14. Weinstock M (1995) The pharmacotherapy of Alzheimer’s disease based on the cholinergic hypothesis: an update. Neurodegeneration 4:349–356

    Article  PubMed  CAS  Google Scholar 

  15. Das A, Shanker G, Nath C et al (2002) A comparative study I rodents of standardized extracts of Bacopa monniera and ginkgo biloba anticholinesterase and cognitive enhancing activities. Pharmacol Biochem Behav 73:893–900

    Article  PubMed  CAS  Google Scholar 

  16. Rees T, Hammond PI, Soreq H et al (2003) Acetylcholinesterase promotes beta-amyloid plaques in cerebral cortex. Neurobiol Aging 24:777–787

    Article  PubMed  CAS  Google Scholar 

  17. Kasa SrP, Papp H, Kasa P Jr et al (2004) Effects of amyloid-beta on cholinergic and acetylcholinesterase-positive cells in cultured basal forebrain neurons of embryonic rat brain. Brain Res 998:73–82

    Article  CAS  Google Scholar 

  18. Franklin RJM (2002) Why does remyelination fail in multiple sclerosis? Nature 3:705–714

    CAS  Google Scholar 

  19. Neuhaus O, Archelos JJ, Hartung HP (2003) Immunomudulation in multiple sclerosis: from immunossupression to neuroprotection. Trends Pharmac Sci 24:131–137

    Article  CAS  Google Scholar 

  20. Blum D, Yonelinas AP, Luks T et al (2002) Dissociating perceptual and conceptual implicit memory in multiple sclerosis patients. Brain Cognition 50:51–61

    Article  Google Scholar 

  21. Freo U, Pizzolato G, Dam M et al (2002) A short review of cognitive and functional neuroimaging studies of cholinergic drugs: implications for therapeutic potentials. J Neural Transm 109:857–870

    Article  PubMed  CAS  Google Scholar 

  22. Greene YM, Tariot PN, Wishart H et al (2000) A 12-week, open trial of donepezil hydrochloride in patients with multiple sclerosis and associated cognitive impairments. J Clin Psychopharmacol 20:350–356

    Article  PubMed  CAS  Google Scholar 

  23. Yajima K, Suzuki K (1979) Demyelination and remyelination in the rat central nervous system following ethidium bromide injection. Lab Invest 41:385–392

    PubMed  CAS  Google Scholar 

  24. Graça DL, Blakemore WF (1986) Delayed remyelination in rat spinal cord following ethidium bromide injection. Neuropathol Appl Neurobiol 12:593–605

    Article  PubMed  Google Scholar 

  25. Graça DL, Bondan EF, Pereira LAVD et al (2001) Behaviour of oligodendrocytes and Schwann cells in an experimental model of toxic demyelination of the central nervous system. Arq Neuropsiquiatr 59:358–361

    PubMed  Google Scholar 

  26. Bondan EF, Lallo M, Sinhorini IL et al (2000) The effect of cyclophosphamide on brainstem remyelination follwing local ethidium bromide injection in wistar rats. J Submicrosc Cytol Pathol 32:603–612

    PubMed  CAS  Google Scholar 

  27. Revel M (2003) Interferon-β in treatment of relapsing-remitting multiple sclerosis. Pharmacol Therapeut 100:49–62

    Article  CAS  Google Scholar 

  28. Okada K, Kuroda E, Yoshida Y et al (2005) Effects of interferon-β on the cytokine production of astrocytes. J Neuroimmunol 159:48–54

    Article  PubMed  CAS  Google Scholar 

  29. Barca O, Ferré S, Seoane M et al (2003) Interferon beta promotes survival in primary astrocytes through phosphatidylinositol 3-Kinase. J Neuroimmunol 139:155–159

    Article  PubMed  CAS  Google Scholar 

  30. Malik O, Compston DAS, Scolding NJ (1998) Interferon-beta inhibits mitogen induced astrocyte proliferation in vitro. J Neuroimmunol 86:155–162

    Article  PubMed  CAS  Google Scholar 

  31. Barak Y, Achiron A (2002) Effects of interferon–beta-1b on cognitive functions in multiple sclerosis. Eur Neurol 47:11–14

    Article  PubMed  CAS  Google Scholar 

  32. Rao SM (2004) Cognitive function in patients with multiple sclerosis: Impairment and treatment. Int J MS Care 1:9–22

    Google Scholar 

  33. Das A, Rai D, Diksshit M et al (2005) Nature of stress: Differential effects on brain acetylcholinesterase activity and memory in rats. Life Sci 77:2299–2311

    Article  PubMed  CAS  Google Scholar 

  34. Nagy A, Delgado-Escueta AV (1984) Rapid preparation of synaptosomes from mammalian brain using nontoxic isosmotic gradient material (Percoll). J Neurochem 43:1114–1123

    Article  PubMed  CAS  Google Scholar 

  35. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  36. Ellmann GL, Courtney KD, Andres V et al (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  Google Scholar 

  37. Rocha JBT, Emanuelli T, Pereira ME (1993) Effects of early undernutrition on kinetic parameters of brain acetylcholinesterase from adult rats. Acta Neurobiol Exp 53:431–437

    CAS  Google Scholar 

  38. Stangel M, Hartung HP (2002) Remyelinating strategies for treatment of multiple sclerosis. Prog Neurobiol 68:361–376

    Article  PubMed  CAS  Google Scholar 

  39. Ohler B, Graf K, Bragg R et al (2004) Role of lipid interactions in autoimmune demyelination. Biochim Biophys Acta 1688:10–17

    PubMed  CAS  Google Scholar 

  40. Gustavson AR, Cummings JL (2003) Cholinesterase inhibitors in non-alzheimer dementias. American Medical Directors Association 165–169

  41. Racchi M, Mazzucchelli M, Porrello E et al (2004) Acetylcholinesterase inhibitors: novel activities of old molecules. Pharmacol Res 50:441–451

    Article  PubMed  CAS  Google Scholar 

  42. Spanevello RM, Mazzanti CM, Kaizer R et al (2006) Apyrase and 5′-nucleotidase in synaptosomes from the cerebral cortex of rats experimentally demyelinated with ethidium bromide and treated with Interferon–β. Neurochem Res 31:455–462

    Article  PubMed  CAS  Google Scholar 

  43. Moulian N, Gaudry-Talarmain Y, Israël M (1994) Spontaneous release of acetylcholine from Torpedo Synaptosomes: effect of cetiedil and its analogue MR 16728. J Neurochem 62:113–118

    Article  PubMed  CAS  Google Scholar 

  44. Schetinger MRC, Porto NM, Moretto MB et al (2000) New benzodiazepines alter acetylcholinesterase and ATPDase activities. Neurochem Res 25:919–955

    Article  Google Scholar 

  45. Muller TC, Rocha JBT, Morsch VM et al (2002) Antidepressants inhibit human acetylcholinesterase and butyrylcholinesterase activity. Biochim Biophys Acta 1587:92–98

    PubMed  CAS  Google Scholar 

  46. Mazzanti CM, Spanevello R, Obregon A et al (2006). Ethidium bromide inhibits rat brain acetylcholinesterase activity in vitro. Chem-Biol Interact (In press)

Download references

Acknowledgments

The authors wish to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, 141317/03-5), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. C. Schetinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazzanti, C.M., Spanevello, R.M., Pereira, L.B. et al. Acetylcholinesterase Activity in Rats Experimentally Demyelinated with Ethidium Bromide and Treated with Interferon Beta. Neurochem Res 31, 1027–1034 (2006). https://doi.org/10.1007/s11064-006-9112-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9112-0

Keywords

Navigation