Skip to main content
Log in

Activity of Lactate Dehydrogenase in Serum and Cerebral Cortex of Immature and Mature Rats after Hypobaric Hypoxia

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In our previous studies we have found both an increase of lipid peroxidation damage (expressed as levels of thiobarbituric acid-reactive substances) in brain and plasma lactate concentration in 21-day-old rats after a 30-min exposure to hypobaric hypoxia. Pretreatment of rats with l-carnitine decreased both parameters. The aim of our present study was to determine if the l-carnitine-dependent decrease of plasma lactate could be due to a modification of lactate dehydrogenase (LDH) activity. We followed brain and blood serum LDH activity of 14-, 21- and 90-day-old Wistar rats. We found an increase of brain LDH activity with age. However, we did not observe any significant differences in LDH activity after exposure to hypobaric hypoxia or l-carnitine pretreatment. In contrast to brain, serum LDH activity did not show any clear age-dependence. The hypoxia exposure increased LDH activity of 21-day-old rats only. Pretreatment of rats with l-carnitine decreased serum LDH activity of 21- and 90-day-old rats probably due to membrane stabilizing role of l-carnitine. In conclusions, acute hypobaric hypoxia and/or l-carnitine pretreatment modified serum but not brain LDH activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rossignol F, Solares M, Balanza E, Coudert J, Clottes E (2003) Expression of lactate dehydrogenase A and B genes in different tissue of rats adapted to chronic hypobaric hypoxia. J Cell Biochem 89:67–79

    Article  PubMed  CAS  Google Scholar 

  2. Firth JD, Ebert BL, Ratcliffe PJ (1995) Hypoxic regulation of lactate dehydrogenase A. Interaction between hypoxia-inducible factor 1 and cAMP response elements. J Biol Chem 270:21021–21027

    Article  PubMed  CAS  Google Scholar 

  3. Ebert BL, Gleadle JM, O’Rourke JF, Bartlett SM, Poulton J, Ratcliffe PJ (1996) Isoenzyme-specific regulation of genes involved in energy metabolism by hypoxia: similarities with the regulation of erythropoietin. Biochem J 313:809–814

    PubMed  CAS  Google Scholar 

  4. Tan S, Zhou F, Nielsen VG, Wang Z, Gladson CL, Parks DA (1998) Sustained hypoxia-ischemia results in reactive nitrogen and oxygen species production and injury in the premature fetal rabbit brain. J Neuropathol Exp Neurol 57:544–553

    PubMed  CAS  Google Scholar 

  5. Li C, Jackson RM (2002) Reactive species mechanisms of cellular hypoxia–reoxygenation injury. Am J Physiol Cell Physiol 282:C227–C241

    PubMed  CAS  Google Scholar 

  6. Koudelová J, Mourek J, Drahota Z, Rauchová H (1994) Protective effect of carnitine on lipoperoxide formation in rat brain. Physiol Res 43:387–389

    PubMed  Google Scholar 

  7. Rauchová H, Koudelová J, Drahota Z, Mourek J (2002) Hypoxia-induced lipid peroxidation in rat brain and protective effect of carnitine and phosphocreatine. Neurochem Res 27:899–904

    Article  PubMed  Google Scholar 

  8. Bremer J (1983) Carnitine-metabolism and functions. Physiol Rev 63:1420–1480

    PubMed  CAS  Google Scholar 

  9. Rebouche CJ (1992) Carnitine function and requirements during the life cycle. FASEB J 6:3379–3386

    PubMed  CAS  Google Scholar 

  10. Zeyner A, Harmeyer J (1999) Metabolic functions of l-carnitine and its effects as feed additive in horses. A review. Arch Tierernahr 52:115–138

    CAS  Google Scholar 

  11. Hoppel C (1992) The physiological role of carnitine. In: Ferrari R, DiMauro S, Sherwood G (eds) l-Carnitine and its role in medicine: From function to therapy. Academic, London, pp 5–19

    Google Scholar 

  12. Karlic H, Lohninger A (2004) Supplementation of l-carnitine in athletes: does is make sense?. Nutrition 20:709–715

    Article  PubMed  CAS  Google Scholar 

  13. Matsuoka M, Igisu H, Kohriyama K, Inoue N (1991) Suppression of neurotoxicity of ammonia by l-carnitine. Brain Res 567:328–331

    Article  PubMed  CAS  Google Scholar 

  14. Gazola VAFG, Lopez G, Dias RMM, Curi R, Bazotte RB (2001) Comparative effects of diet supplementation with l-carnitine and dl-carnitine on ammonia toxicity and hepatic metabolism in rats. Acta Pharmacol Sin 22:305–310

    PubMed  CAS  Google Scholar 

  15. Felipo V, Minana MD, Cabedo H, Grisolia S (1994) l-Carnitine increases the affinity of glutamate for quisqualate receptors and prevents glutamate neurotoxicity. Neurochem Res 19:373–377

    Article  PubMed  CAS  Google Scholar 

  16. Virmani A, Gaetani F, Imam S, Binienda Z, Ali S (2002) The protective role of l-carnitine against neurotoxicity evoked by drug of abuse, methamphetamine, could be related to mitochondrial dysfunction. Ann NY Acad Sci 965:225–232

    Article  PubMed  CAS  Google Scholar 

  17. Ishii T, Shimpo Y, Matsuoka Y, Kinoshita K (2000) Anti-apoptotic effect of acetyl-l-carnitine and l-carnitine in primary cultured neurons. Jpn J Pharmacol 83:119–124

    Article  PubMed  CAS  Google Scholar 

  18. Matsuoka M, Igisu H (1992) Preservation of energy metabolites by carnitine in the mouse brain under ischemia. Brain Res 590:334–336

    Article  PubMed  CAS  Google Scholar 

  19. Wainwright MS, Mannix MK, Brown J, Stumpf DA (2003) l-Carnitine reduces brain injury after hypoxia-ischemia in newborn rats. Pediatr Res 54:688–695

    Article  PubMed  CAS  Google Scholar 

  20. Arockia Rani PJ, Panneerselvam C (2001) Carnitine as a free radical scavenger in aging. Exp Gerontol 36:1713–1726

    Article  PubMed  CAS  Google Scholar 

  21. Rauchová H, Vokurková M, Koudelová J (2005) Developmental changes of erythrocyte catalase activity in rats exposed to acute hypoxia. Physiol Res 54:527–532

    PubMed  Google Scholar 

  22. Bergmeyer HU, Bernt E (1974) UV-test mit pyruvat und NADH. In: Bergmeyer HU, Gawehn K (eds) Methoden der enzymatischen analyse, vol. 1. Verlag Chemie Weinheim, Bergstr, pp 607–612

    Google Scholar 

  23. Lowry OH, Rosebrough JN, Farr AL, Randal RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  24. Bilger A, Nehlig A (1991) Quantitative histochemical changes in enzymes involved in energy metabolism in the rat brain during postnatal development. I. Cytochrome oxidase and lactate dehydrogenase. Int J Dev Neurosci 9:545–553

    Article  PubMed  CAS  Google Scholar 

  25. Hrachovina V, Mourek J (1976) Influence of starvation on lactic dehydrogenase activity in the serum and brain of rats of different ages. Physiol Bohemoslov 25:313–318

    PubMed  CAS  Google Scholar 

  26. Booth RF, Patel TB, Clark JB (1980) The development of enzymes of energy metabolism in the brain of a precocial (guinea pig) and non-precocial (rat) species. J Neurochem 34:17–25

    PubMed  CAS  Google Scholar 

  27. Leong SF, Clark JB (1984) Regional enzyme development in rat brain. Enzymes associated with glucose utilization. Biochem J 218:131–138

    PubMed  CAS  Google Scholar 

  28. Lai JCK, White BK, Buerstatte CR, Haddad GG, Novotny EJ Jr, Behar KL (2003) Chronic hypoxia in development selectively alters the activities of key enzymes of glucose oxidative metabolism in brain regions. Neurochem Res 28:933–940

    Article  PubMed  CAS  Google Scholar 

  29. Bogaert YE, Rosenthal RE, Fiskum G (1994) Postischemic inhibition of cerebral cortex pyruvate dehydrogenase. Free Radic Biol Med 16:811–820

    Article  PubMed  CAS  Google Scholar 

  30. Koudelová J, Mourek J (1992) Different degrees of lipid peroxidation in the CNS of young and adult rats exposed to short-term hypobaric hypoxia. Physiol Res 41:207–212

    PubMed  Google Scholar 

  31. Di Lisa F, Bobyleva-Guarriero V, Jocelyn P, Toninello A, Siliprandi N (1985) Stabilization action of carnitine on energy linked processes in rat liver mitochondria. Biochem Biophys Res Commun 131:968–973

    Article  PubMed  CAS  Google Scholar 

  32. Arduini A, Rossi M, Mancinelli G, Belfiglio M, Scurti R, Radatti G, Shohet SB (1990) Effect of l-carnitine and acetyl-l-carnitine on the human erythrocyte membrane stability and deformality. Life Sci 47:2395–2400

    Article  PubMed  CAS  Google Scholar 

  33. Evans AM, Fornasini G (2003) Pharmacokinetics of l-carnitine. Clin Pharmacokinet 42:941–967

    Article  PubMed  CAS  Google Scholar 

  34. Rebouche C (2004) Kinetics, pharmacokinetics, and regulation of l-carnitine and acetyl-l-carnitine metabolism. Ann NY Acad Sci 1033:30–41

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was partly supported by research grants no. 305/04/0500 from the Grant Agency of the Czech Republic and nos. 1M6798582302 and AV0Z 50110509 from Ministry of Education, Youth and Sports of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hana Rauchová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koudelová, J., Rauchová, H. & Vokurková, M. Activity of Lactate Dehydrogenase in Serum and Cerebral Cortex of Immature and Mature Rats after Hypobaric Hypoxia . Neurochem Res 31, 915–919 (2006). https://doi.org/10.1007/s11064-006-9097-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9097-8

Keywords

Navigation