Skip to main content
Log in

Regional Variations of 5HT Concentrations in Rora sg (staggerer) Mutants

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Ataxic Rora sg (staggerer) mouse mutants, containing a deletion of the Rora gene which encodes a retinoid-like nuclear receptor, were compared to non-ataxic controls for concentrations of 5-hydroxytryptamine (HT), its main metabolite (5-hydroxy-indole acetic acid, 5HIAA), and its precursor (tryptophan) in cerebellum, brainstem, and forebrain. In Rora sg cerebellum, 5HT concentrations increased relative to controls, while tryptophan concentrations decreased. 5HIAA concentrations increased in mutant cerebellum and brainstem, but the 5HIAA/5HT ratio declined only in cerebellum. These results indicate that 5HT turnover decreased in cerebellum of an ataxic mutant, perhaps indicative of presynaptic accumulation and compromised neurotransmission and susceptible to be modified by 5HT pharmacotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hamilton BA, Frankel WN, Kerrebrock AW et al (1996) Disruption of the nuclear hormone receptor RORα in staggerer mice. Nature 379:736–739

    Article  PubMed  CAS  Google Scholar 

  2. Ino H (2004) Immunohistochemical characterization of the orphan nuclear receptor RORα in the mouse nervous system. J. Histochem. Cytochem. 52:311–323

    Article  PubMed  CAS  Google Scholar 

  3. Nakagawa S, Watanabe M, Inoue Y (1997) Prominent expression of nuclear hormone receptor RORα in Purkinje cells from early development. Neurosci. Res. 28:177–184

    Article  PubMed  CAS  Google Scholar 

  4. Sashihara S, Felts PA, Waxman SG et al (1996) Orphan nuclear receptor ROR gene: isoform-specific spatiotemporal expression during postnatal development of brain. Brain Res. Mol. Brain Res. 42:109–117

    Article  PubMed  CAS  Google Scholar 

  5. Herrup K, Mullen RJ (1979) Regional variation and absence of large neurons in the cerebellum of the staggerer mouse. Brain Res. 172:1–12

    Article  PubMed  CAS  Google Scholar 

  6. Herrup K (1983) Role of staggerer gene in determining cell number in cerebellar cortex. I. Granule cell death is an indirect consequence of staggerer gene action. Brain Res. 11:267–274

    Article  Google Scholar 

  7. Landis DM, Sidman RL (1978) Electron microscopic analysis of postnatal histogenesis in the cerebellar cortex of staggerer mutant mice. J. Comp. Neurol. 179:831–863

    Article  PubMed  CAS  Google Scholar 

  8. Shojaeian H, Delhaye-Bouchaud N, Mariani J (1985) Decreased number of cells in the inferior olivary nucleus of the developing staggerer mouse. Brain Res. 21:141–146

    Article  Google Scholar 

  9. Blatt G, Eisenman L (1985) A qualitative and quantitative light microscopic study of the inferior olivary complex in the adult staggerer mutant mouse. J. Neurogenet. 2:51–66

    PubMed  CAS  Google Scholar 

  10. Roffler-Tarlov S, Herrup K (1981) Quantitative examination of the deep cerebellar nuclei in the staggerer mutant mouse. Brain Res. 215:49–59

    Article  PubMed  CAS  Google Scholar 

  11. Deiss V, Strazielle C, Lalonde R (2000) Regional brain variations of cytochrome oxidase activity and motor co-ordination in staggerer mutant mice. Neuroscience 95:903–911

    Article  PubMed  CAS  Google Scholar 

  12. Lalonde R (1987) Motor abnormalities in staggerer mutant mice. Exp. Brain Res. 68:417–420

    Article  PubMed  CAS  Google Scholar 

  13. Lalonde R, Bensoula AN, Filali M (1995) Rotorod sensorimotor learning in cerebellar mutant mice. Neurosci. Res. 22:423–426

    Article  PubMed  CAS  Google Scholar 

  14. Bishop GA, Ho RH (1985) The distribution and origin of serotonin immunoreactivity in the rat cerebellum. Brain Res. 331:195–207

    Article  PubMed  CAS  Google Scholar 

  15. Ohsugi K, Adachi K, Ando K (1986) Serotonin metabolism in the CNS in cerebellar ataxic mice. Experientia 42:1245–1247

    Article  PubMed  CAS  Google Scholar 

  16. Lane JD, Nadi NS, McBride WJ et al (1977) Contents of serotonin, norepinephrine and dopamine in the cerebrum of the “staggerer”, “weaver” and “nervous” neurologically mutant mice. J. Neurochem. 29:349–350

    PubMed  CAS  Google Scholar 

  17. Gibson CJ, Deikel SM, Young SN et al (1982) Behavioural and biochemical effects of tryptophan, tyrosine and phenylalanine. Psychopharmacology 76:118–121

    Article  PubMed  CAS  Google Scholar 

  18. Ghetti B, Perry KW, Fuller RW (1988) Serotonin concentration and turnover in cerebellum and other brain regions of pcd mutant mice. Brain Res. 458:367–371

    Article  PubMed  CAS  Google Scholar 

  19. Reader TA, Le Marec N, Ase AR et al (1999) Effects of l-tryptophan on indoleamines and catecholamines in discrete brain regions of wild type and Lurcher mutant mice. Neurochem. Res. 24:1125–1134

    Article  PubMed  CAS  Google Scholar 

  20. Strazielle C, Lalonde R, Riopel L et al (1996) Regional distribution of the 5-HT innervation in the brain of normal and Lurcher mice as revealed by [3H]citalopram quantitative autoradiography. J. Chem. Neuroanat. 10:157–171

    Article  PubMed  CAS  Google Scholar 

  21. Draski LJ, Nash DJ, Gerhardt GA (1994) CNS monoamine levels and motoric behaviors in the hotfoot ataxic mutant. Brain Res. 645:69–77

    Article  PubMed  CAS  Google Scholar 

  22. Ase A, Strazielle C, Hébert C et al (2000) The central serotonin system in dystonia musculorum mutant mice: biochemical, autoradiographic and immunocytochemical data. Synapse 37:179–193

    Article  PubMed  CAS  Google Scholar 

  23. Le Marec N, Hébert C, Amdiss F et al (1998) Regional distribution of 5-HT transporters in the brain of wild type and ‘Purkinje cell degeneration’ mutant mice: a quantitative autoradiographic study with [3H]citalopram. J. Chem. Neuroanat. 15:155–171

    Article  PubMed  CAS  Google Scholar 

  24. Cooper JR, Bloom FE, Roth RH (1996) The biochemical basis of neuropharmacology, 7th edn. Oxford, New York

    Google Scholar 

  25. Le Marec N, Ase AR, Botez-Marquard T et al (2001) Behavioral and biochemical effects of l-tryptophan and buspirone in a model of cerebellar atrophy. Pharmacol. Biochem. Behav. 69:333–342

    Article  PubMed  CAS  Google Scholar 

  26. Trouillas P, Serratrice G, Laplane D et al (1995) Levorotatory form of 5-hydroxytryptophan in Friedreich’s ataxia. Arch. Neurol. 52:456–460

    PubMed  CAS  Google Scholar 

  27. Trouillas P, Xie J, Adeleine P et al (1997) Buspirone, a 5-hydroxy-tryptamine1A agonist, is active in cerebellar ataxia: results of a double-blind drug placebo study in patients with cerebellar cortical atrophy. Arch. Neurol. 54:749–752

    PubMed  CAS  Google Scholar 

  28. Takei A, Hamada T, Yabe I et al (2005) Treatment of cerebellar ataxia with 5-HT1A agonist. Cerebellum 4:211–215

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from NSERC to RL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Lalonde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lalonde, R., Strazielle, C. Regional Variations of 5HT Concentrations in Rora sg (staggerer) Mutants. Neurochem Res 31, 921–924 (2006). https://doi.org/10.1007/s11064-006-9096-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9096-9

Keywords

Navigation