Skip to main content
Log in

Differential Involvement of Intracellular Ca2+ in 1-Methyl-4-phenylpyridinium- or 6-Hydroxydopamine-Induced Cell Viability Loss in PC12 Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

1-Methyl-4-phenylpyridinium (MPP+) or 6-hydroxydopamine (6-OHDA) caused a nuclear damage, the mitochondrial membrane permeability changes, leading to the cytochrome c release and caspase-3 activation, the formation of reactive oxygen species and the depletion of GSH in PC12 cells. Nicardipine (a calcium channel blocker), EGTA (an extracellular calcium chelator), BAPTA-AM (a cell permeable calcium chelator) and calmodulin antagonists (W-7 and calmidazolium) attenuated the MPP+-induced mitochondrial damage and cell death. In contrast, the compounds did not reduce the toxicity of 6-OHDA. Treatment with MPP+ or 6-OHDA evoked the elevation of intracellular Ca2+ levels. Unlike cell injury, addition of nicardipine, BAPTA-AM and calmodulin antagonists prevented the elevation of intracellular Ca2+ levels due to both toxins. The results show that the MPP+-induced formation of the mitochondrial permeability transition seems to be mediated by elevation of intracellular Ca2+ levels and calmodulin action. In contrast, the 6-OHDA-induced cell death seems to be mediated by Ca2+-independent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Polster BM, Fiskum G (2004) Mitochondrial mechanisms of neural cell apoptosis. J Neurochem 90:1281–1289

    Article  PubMed  CAS  Google Scholar 

  2. Cassarino DS, Parks JK, Parker WD Jr et al (1999) The Parkinsonian neurotoxin MPP+ opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism. Biochim Biophys Acta 1453:49–62

    PubMed  CAS  Google Scholar 

  3. Kim DH, Jang YY, Han ES, Lee CS (2001) Protective effect of harmaline and harmalol against dopamine- and 6-hydroxydopamine-induced oxidative damage of brain mitochondria and synaptosomes, and viability loss of PC12 cells. Eur J Neurosci 13:1861–1872

    Article  PubMed  CAS  Google Scholar 

  4. Lee CS, Park SY, Ko HH et al (2005) Inhibition of MPP+-induced mitochondrial damage and cell death by trifluoperazine and W-7 in PC12 cells. Neurochem Int 46:169–178

    Article  PubMed  CAS  Google Scholar 

  5. Rojas P, Rios C (1993) Increased striatal lipid peroxidation after intracerebroventricular MPP+ administration to mice. Pharamcol Toxicol 72:364–368

    Article  CAS  Google Scholar 

  6. Obata T (2003) Calcium overload enhances hydroxyl radical generation by 1-methyl-4-phenylpyridinium ion (MPP+) in rat striatum. Brain Res 965:287–289

    Article  PubMed  CAS  Google Scholar 

  7. Fonck C, Baudry M (2001) Toxic effects of MPP+ and MPTP in PC12 cells independent of reactive oxygen species formation. Brain Res 905:199–206

    Article  PubMed  CAS  Google Scholar 

  8. Jordán J, Galindo MF, Tornero D et al (2004) Bcl-xL blocks mitochondrial multiple conductance channel activation and inhibits 6-OHDA-induced death in SH-SY5Y cells. J Neurochem 89:124–133

    Article  PubMed  CAS  Google Scholar 

  9. Orrenius S, Burkitt MJ, Kass GE et al (1992) Calcium ions and oxidative cell injury. Ann Neurol 32:S33–S42

    Article  PubMed  CAS  Google Scholar 

  10. Choi DW (1995) Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci 18:58–60

    Article  PubMed  CAS  Google Scholar 

  11. Ermak G, Davies KJ (2002) Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 38:713–721

    Article  PubMed  CAS  Google Scholar 

  12. Hajnóczky G, Davies E, Madesh M (2003) Calcium signaling and apoptosis. Biochem Biophys Res Commun 304:445–454

    Article  PubMed  CAS  Google Scholar 

  13. Obata T (2002) Dopamine efflux by MPTP and hydroxyl radical generation. J Neural Transm 109:1159–1180

    Article  PubMed  CAS  Google Scholar 

  14. Choi WS, Canzoniero LMT, Sensi SL et al (1999) Characterization of MPP+-induced cell death in a dopaminergic neuronal cell line: role of macromolecule synthesis, cytosolic calcium, caspase, and Bcl-2-related proteins. Exp Neurol 159:274–282

    Article  PubMed  CAS  Google Scholar 

  15. Ho AK, Duffield R (2000) 6-Hydroxydopamine-induced developmental cardiac alterations in morphology, calmodulin content, and K+-mediated [Ca2+]i transient of chicken cardiomyocytes. J Mol Cell Cardiol 32:1315–1326

    Article  PubMed  CAS  Google Scholar 

  16. Abad F, Maroto Lopez MG, Sanchez-Garcίa P et al (1995) Pharmacological protection against the cytotoxicity induced by 6-hydroxydopamine and H2O2 in chromaffin cells. Eur J Pharmacol 293:55–64

    Article  PubMed  CAS  Google Scholar 

  17. Sautter J, Kupsch A, Earl CD et al (1997) Degeneration of pre-labelled nigral neurons induced by intrastriatal 6-hydroxydopamine in the rat: behavioural and biochemical changes and pretreatment with the calcium-entry blocker nimodipine. Exp Brain Res 117:111–119

    Article  PubMed  CAS  Google Scholar 

  18. Shen HM, Yang CF, Ding WX et al (2001) Superoxide radical-initiated apoptotic signaling pathway in selenite-treated HepG(2) cells: mitochondria serve as the main target. Free Radic Biol Med 30:9–21

    Article  PubMed  CAS  Google Scholar 

  19. Rodrigues T, Santos AC, Pigoso AA et al (2002) Thioridazine interacts with the membrane of mitochondria acquiring antioxidant activity toward apoptosis––potentially implicated mechanisms. Br J Pharmacol 136:136–142

    Article  PubMed  CAS  Google Scholar 

  20. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  21. Lotharius J, Dugan LL, O’Malley KL (1999) Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons. J Neurosci 19:1284–1293

    PubMed  CAS  Google Scholar 

  22. Isenberg JS, Klaunig JE (2000) Role of the mitochondrial membrane permeability transition (MPT) in rotenone-induced apoptosis in liver cells. Toxicol Sci 53:340–351

    Article  PubMed  CAS  Google Scholar 

  23. Mignotte B, Vayssière JL (1998) Mitochondria and apoptosis. Eur J Biochem 252:1–15

    Article  PubMed  CAS  Google Scholar 

  24. Naganuma T, Murayama T, Nomura Y (1999) Modifications of Ca2+ mobilization and noradrenaline release by S-nitroso-cysteine in PC12 cells. Arch Biochem Biophys 364:133–142

    Article  PubMed  CAS  Google Scholar 

  25. Parys JB, Missiaen L, De Smedt H et al (1993) Loading dependence of inositol 1,4,5-trisphosphate-induced Ca2+ release in the clonal cell line A7r5. Implications for the mechanism of quantal Ca2+ release. J Biol Chem 268:25206–25212

    PubMed  CAS  Google Scholar 

  26. Fu W, Luo H, Parthasarathy S et al (1998) Catecholamines potentiate amyloid β-peptide neurotoxicity: involvement of oxidative stress, mitochondrial dysfunction, and perturbed calcium homeostasis. Neurobiol Dis 5:229–243

    Article  PubMed  CAS  Google Scholar 

  27. van Klaveren RJ, Hoet PH, Pype JL et al (1997) Increase in gamma-glutamyltransferase by glutathione depletion in rat type II pneumocytes. Free Radic Biol Med 22:525–534

    Article  PubMed  Google Scholar 

  28. Hall AG (1999) The role of glutathione in the regulation of apoptosis. Eur J Clin Invest 29:238–245

    Article  PubMed  CAS  Google Scholar 

  29. Zeevalk GD, Bernard LP, Song C et al (2005) Mitochondrial inhibition and oxidative stress: reciprocating players in neurodegeneration. Antioxid Redox Signal 7:1117–1139

    Article  PubMed  CAS  Google Scholar 

  30. Crow MT, Mani K, Nam Y-J et al (2004) The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res 95:957–970

    Article  PubMed  CAS  Google Scholar 

  31. Kim R, Emi M, Tanabe K (2006) Role of mitochondria as the gardens of cell death. Cancer Chemother Pharmacol 57:545–553

    Article  PubMed  CAS  Google Scholar 

  32. Lee CS, Han JH, Jang YY et al (2002) Differential effect of catecholamines and MPP+ on membrane permeability in brain mitochondria and cell viability in PC12 cells. Neurochem Int 40:361–369

    Article  PubMed  CAS  Google Scholar 

  33. Berman SB, Hastings TG (1999) Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J Neurochem 73:1127–1137

    Article  PubMed  CAS  Google Scholar 

  34. Galindo MF, Jordán J, González-Garcίa C et al (2003) Chromaffin cell death induced by 6-hydroxydopamine is independent of mitochondrial swelling and caspase activation. J Neurochem 84:1066–1073

    Article  PubMed  CAS  Google Scholar 

  35. Chandra J, Samali A, Orrenius S (2000) Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med. 29:323–333

    Article  PubMed  CAS  Google Scholar 

  36. Mazzio EA, Reams RR, Soliman KF (2004) The role of oxidative stress, impaired glycolysis and mitochondrial respiratory redox failure in the cytotoxic effects of 6-hydroxydopamine in vitro. Brain Res 1004:29–44

    Article  PubMed  CAS  Google Scholar 

  37. Tan S, Sagara Y, Liu Y et al (1998) The regulation of reactive oxygen species production during programmed cell death. J Cell Biol. 141:1423–1432

    Article  PubMed  CAS  Google Scholar 

  38. Constantini PC, Chernyak BC, Petronilli V et al (1996) Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites. J Biochem Biol. 271:6746–6751

    Google Scholar 

  39. Leist M, Volbracht C, Fava E et al (1998) 1-Methyl-4-phenylpyridinium induces autocrine excitotoxicity, protease activation, and neuronal apoptosis. Mol Pharmacol 54:789–801

    PubMed  CAS  Google Scholar 

  40. Li G, Liu Y, Olson JE (2002) Calcium/calmodulin-modulated chloride and taurine conductances in cultured rat astrocytes. Brain Res 925:1–8

    Article  PubMed  CAS  Google Scholar 

  41. Khan SZ, Dyer JL, Michelangeli F (2001) Inhibition of the type 1 inositol 1,4,5-trisphosphate-sensitive Ca2+ channel by calmodulin antagonists. Cell Signal 13:57–63

    Article  PubMed  CAS  Google Scholar 

  42. Ui-Tei K, Nagano M, Sato S et al (2000) Calmodulin-dependent and -independent apoptosis in cell of a Drosophila neuronal cell line. Apoptosis 5:133–140

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Research Foundation Grant (KRF-2004-015-E00093) to C.S. Lee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung Soo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D.H., Han, Y.S., Han, E.S. et al. Differential Involvement of Intracellular Ca2+ in 1-Methyl-4-phenylpyridinium- or 6-Hydroxydopamine-Induced Cell Viability Loss in PC12 Cells. Neurochem Res 31, 851–860 (2006). https://doi.org/10.1007/s11064-006-9088-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9088-9

Keywords

Navigation