Skip to main content
Log in

Agonist-induced Internalization of the Caenorhabditis elegans Muscarinic Acetylcholine Receptor GAR-3 in Chinese Hamster Ovary Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Many membrane-bound neurotransmitter receptors are known to be internalized by exposure to agonist. This agonist-induced receptor internalization is considered to play important roles in receptor-mediated signaling. Here we investigated the internalization of GAR-3, a Caenorhabditis elegans muscarinic acetylcholine receptor, using cultured mammalian cells. When Chinese hamster ovary cells stably expressing GAR-3 were treated with carbachol, GAR-3 was internalized in a dose- and time-dependent manner. Approximately 60% of the cell surface receptor was internalized by exposure to 1 mM carbachol for 1 h. Carbachol-induced GAR-3 internalization was suppressed by treatment with hypertonic sucrose, which blocks the formation of clathrin-coated pits. Overexpression of a dominant-negative dynamin mutant (DynK44A), but not of a dominant-negative β-arrestin mutant (Arr319–418), substantially inhibited carbachol-induced internalization of GAR-3. Thus, these data suggest that GAR-3 undergoes agonist-induced internalization via a clathrin- and dynamin-dependent but β-arrestin-independent pathway. Depletion of Ca2+ by simultaneous treatment of the cells with BAPTA/AM (Ca2+ mobilization blocker) and EGTA (Ca2+ influx blocker) almost completely blocked agonist-induced GAR-3 internalization. Moreover, treatment of the cells with the Ca2+ ionophore A23187 led to GAR-3 internalization in the absence of agonist. These results indicate that Ca2+ plays a critical role in GAR-3 internalization. We tested whether the third intracellular (i3) loop of GAR-3 is involved in agonist-stimulated receptor internalization. A GAR-3 deletion mutant lacking a large central portion of the i3 loop exhibited an internalization pattern comparable to that of the wild type, suggesting that the central i3 loop is not required for the internalization of GAR-3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

C. elegans :

Caenorhabditis elegans

CaMKII:

Ca2+/calmodulin-depedndent protein kinase II

CHO:

Chinese hamster ovary

GPCR:

G-protein-coupled receptor

i3 loop:

third intracellular loop

mAChR:

muscarinic acetylcholine receptor

[3H]NMS:

[3H]N-methylscopolamine

PKC:

protein kinase C

References

  1. Claing A, Laporte SA, Caron MG, Lefkowitz RJ (2002) Endocytosis of G protein-coupled receptors: roles of G protein-coupled receptor kinases and β-arrestin proteins. Prog Neurobiol 66:61–79

    Article  PubMed  CAS  Google Scholar 

  2. Bunemann M, Lee KB, Pals-Rylaarsdam R, Roseberry AG, Hosey MM (1999) Desensitization of G-protein-coupled receptors in the cardiovascular system. Annu Rev Physiol 61:169–192

    Article  PubMed  CAS  Google Scholar 

  3. van Koppen CJ, Kaiser B (2003) Regulation of muscarinic acetylcholine receptor signaling. Pharmacol Ther 98:197–220

    Article  PubMed  CAS  Google Scholar 

  4. Ferguson SSG (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 53:1–24

    PubMed  CAS  Google Scholar 

  5. von Zastrow M (2003) Mechanisms regulating membrane trafficking of G protein-coupled receptors in the endocytic pathway. Life Sci 74:217–224

    Article  CAS  Google Scholar 

  6. Yu SS, Lefkowitz RJ, Hausdorff WP (1993) β-adrenergic receptor sequestration. J Biol Chem 268:337–341

    PubMed  CAS  Google Scholar 

  7. Barak LS, Tiberi M, Freedman NJ, Kwatra MM, Lefkowitz RJ, Caron MG (1994) A highly conserved tyrosine residue in G protein-coupled receptors is required for agonist-mediated β2-adrenergic receptor sequestration. J Biol Chem 269:2790–2795

    PubMed  CAS  Google Scholar 

  8. Szekeres PG, Koenig JA, Edwardson JM (1998) Involvement of receptor cycling and receptor reserve in resensitization of muscarinic responses in SH-SY5Y human neuroblastoma cells. J Neurochem 70:1694–1703

    Article  PubMed  CAS  Google Scholar 

  9. Ishii I, Saito E, Izumi T, Ui M, Shimizu T (1998) Agonist-induced sequestration, recycling, and resensitization of platelet-activating factor receptor. J Biol Chem 273:9878–9885

    Article  PubMed  CAS  Google Scholar 

  10. Hasbi A, Allouche S, Sichel F, Stanasila L, Massotte D, Landemore G, Polastron J, Jauzac P (2000) Internalization and recycling of δ-opioid receptor are dependent on a phospharylation-dephosphorylation mechanism. J Pharmacol Exp Ther 293:237–247

    PubMed  CAS  Google Scholar 

  11. Daaka Y, Luttrell LM, Ahn S, Della Rocca GJ, Ferguson SSG, Caron MG, Lefkowitz RJ (1998) Essential role for G-protein-coupled receptor endocytosis in the activation of mitogen-activated protein kinase. J Biol Chem 273:685–688

    Article  PubMed  CAS  Google Scholar 

  12. Vogler O, Nolte B, Voss M, Schmidt M, Jakobs KH, van Koppen CJ (1999) Regulation of muscarinic acetylcholine receptor sequestration and function by β-arrestin. J Biol Chem 274:12333–12338

    Article  PubMed  CAS  Google Scholar 

  13. Ignatova EG, Belcheva MM, Bohn LM, Neuman MC, Coscia CJ (1999) Requirement of receptor internalization for opioid stimulation of mitogen-activated protein kinase: biochemical and immunofluorescence confocal microscopic evidence. J Neurosci 19:56–63

    PubMed  CAS  Google Scholar 

  14. DeFea KA, Zalevsky J, Thoma MS, Dery O, Mullins RD, Bunnett NW (2000) β-arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J Cell Biol 148:1267–1281

    Article  PubMed  CAS  Google Scholar 

  15. Bunemann M, Hosey MM (1999) G-protein coupled receptor kinases as modulators of G-protein signaling. J Physiol 517:5–23

    Article  PubMed  CAS  Google Scholar 

  16. Prossnitz ER (2004) Novel roles for arrestins in the post-endocytic trafficking of G protein-coupled receptors. Life Sci 75:893–899

    Article  PubMed  CAS  Google Scholar 

  17. Lee Y-S, Park Y-S, Chang D-J, Hwang JM, Min CK, Kaang B-K, Cho NJ (1999) Cloning and expression of a G protein-linked acetylcholine receptor from Caenorhabditis elegans. J Neurochem 72:58–65

    Article  PubMed  CAS  Google Scholar 

  18. Lee Y-S, Park Y-S, Nam S, Suh SJ, Lee J, Kaang B-K, Cho NJ (2000) Characterization of GAR-2, a novel G protein-linked acetylcholine receptor from Caenorhabditis elegans. J Neurochem 75:1800–1809

    Article  PubMed  CAS  Google Scholar 

  19. Hwang JM, Chang D-J, Kim US, Lee Y-S, Park Y-S, Kaang B-K, Cho NJ (1999) Cloning and functional characterization of a Caenorhabditis elegans muscarinic acetylcholine receptor. Receptor Channel 6: 415–424

    CAS  Google Scholar 

  20. Park Y-S, Kim S, Shin Y, Choi B, Cho NJ (2003) Alternative splicing of the muscarinic acetylcholine receptor GAR-3 in Caenorhabditis elegans. Biochem. Biophys Res Commun 308:961–965

    Article  PubMed  CAS  Google Scholar 

  21. Harden TK, Petch LA, Traynelis SF, Waldo GL (1985) Agonist-induced alteration in the membrane form of muscarinic cholinergic receptors. J Biol Chem 260:13060–13066

    PubMed  CAS  Google Scholar 

  22. Goldman PS, Nathanson NM (1994) Differential role of the carboxyl-terminal tyrosine in down-regulation and sequestration of the m2 muscarinic acetylcholine receptor. J Biol Chem 269:15640–15645

    PubMed  CAS  Google Scholar 

  23. Heuser JE, Anderson RGW (1989) Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. J Cell Biol 108:389–400

    Article  PubMed  CAS  Google Scholar 

  24. Slowiejko DM, McEwen EL, Ernst SA, Fisher SK (1996) Muscarinic receptor sequestration in SH-SY5Y neuroblastoma cells is inhibited when clathrin distribution is perturbed. J Neurochem 66:186–196

    Article  PubMed  CAS  Google Scholar 

  25. Damke H, Baba T, Warnock DE, Schmid SL (1994) Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J Cell Biol 127:915–934

    Article  PubMed  CAS  Google Scholar 

  26. Krupnick JG, Santini F, Gagnon AW, Keen JH, Benovic JL (1997) Modulation of the arrestin-clathrin interaction in cells. J Biol Chem 272:32507–32512

    Article  PubMed  CAS  Google Scholar 

  27. Min DS, Cho NJ, Yoon SH, Lee YH, Hahn SJ, Lee KH, Kim MS, Jo YH (2000) Phospholipase C, protein kinase C, Ca2+/calmodulin-dependent protein kinase II, and tyrosine phosphorylation are involved in carbachol-induced phospholipase D activation in Chinese hamster ovary cells expressing muscarinic acetylcholine receptor of Caenorhabditis elegans. J Neurochem 75:274–281

    Article  PubMed  CAS  Google Scholar 

  28. Maeda S, Lameh J, Mallet WG, Philip M, Ramachandran J, Sadee W (1990) Internalization of the Hm1 muscarinic cholinergic receptor involves the third cytoplasmic loop. FEBS Lett 269:386–388

    Article  PubMed  CAS  Google Scholar 

  29. Lameh J, Philip M, Sharma YK, Moro O, Ramachandran J, Sadee W (1992) Hm1 muscarinic cholinergic receptor internalization requires a domain in the third cytoplasmic loop. J Biol Chem 267:13406–13412

    PubMed  CAS  Google Scholar 

  30. Moro O, Lameh J, Sadee W (1993) Serine- and threonine-rich domain regulates internalization of muscarinic cholinergic receptors. J Biol Chem 268:6862–6865

    PubMed  CAS  Google Scholar 

  31. Tsuga H, Kameyama K, Haga T, Honma T, Lameh J, Sadee W (1998) Internalization and down-regulation of human muscarinic acetylcholine receptor m2 subtypes. J Biol Chem 273:5323–5330

    Article  PubMed  CAS  Google Scholar 

  32. Wu G, Bogatkevich GS, Mukhin YV, Benovic JL, Hildebrandt JD, Lanier SM (2000) Identification of Gβγ binding sites in the third intracellular loop of the M3-muscarinic receptor and their role in receptor regulation. J Biol Chem 275: 9026–9034

    Article  PubMed  CAS  Google Scholar 

  33. Putney JW (2001) Channelling calcium. Nature 410:648–649

    Article  PubMed  CAS  Google Scholar 

  34. Ferrari SL, Behar V, Chorev M, Rosenblatt M, Bisello A (1999) Endocytosis of ligand-human parathyroid hormone receptor 1 complexes is protein kinase C-dependent and involves β-arrestin2. J Biol Chem 274:29968–29975

    Article  PubMed  CAS  Google Scholar 

  35. Mundell SJ, Matharu A-L, Pula G, Holman D, Roberts J, Kelly E (2002) Metabotropic glutamate receptor 1 internalization induced by muscarinic acetylcholine receptor activation: differential dependency of internalization of splice variants on nonvisual arrestins. Mol Pharmacol 61:1114–1123

    Article  PubMed  CAS  Google Scholar 

  36. Vogler O, Bogatkewitsch GS, Wriske C, Krummenerl P, Jakobs KH, van Koppen CJ (1998) Receptor subtype-specific regulation of muscarinic acetylcholine receptor sequestration by dynamin. J Biol Chem 273:12155–12160

    Article  PubMed  CAS  Google Scholar 

  37. Lee KB, Pals-Rylaarsdam R, Benovic JL, Hosey MM (1998) Arrestin-independent internalization of the m1, m3, and m4 subtypes of muscarinic cholinergic receptors. J Biol Chem 273:12967–12972

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ja-Hyun Baik (Korea University, Korea) for her valuable suggestions. We also thank Dr. Eamonn Kelly (University of Bristol, UK) for providing the DynK44A and Arr319–418 plasmids. This work was supported by Korea Research Foundation Grant (KRF-2003-015-C00578).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam Jeong Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, B., Park, YS. & Cho, N.J. Agonist-induced Internalization of the Caenorhabditis elegans Muscarinic Acetylcholine Receptor GAR-3 in Chinese Hamster Ovary Cells. Neurochem Res 31, 719–725 (2006). https://doi.org/10.1007/s11064-006-9072-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9072-4

Keywords

Navigation